Browsing by Author "Mendoza, H"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEnrichment of canalicular membrane with cholesterol and sphingomyelin prevents bile salt-induced hepatic damage(AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 1999) Amigo, L; Mendoza, H; Zanlungo, S; Miquel, JF; Rigotti, A; Gonzalez, S; Nervi, FThese studies were undertaken to characterize the role of plasma membrane cholesterol in canalicular secretory functions and hepatocyte integrity against intravenous taurocholate administration. Cholesterol and sphingomyelin concentrations and cholesterol/phospholipid ratios were significantly increased in canalicular membranes of diosgenin-fed rats, suggesting a more resistant structure against solubilization by taurocholate. During taurocholate infusion, control rats had significantly decreased bile flow, whereas diosgenin-fed animals maintained bile flow, Maximal cholesterol output increased by 176% in diosgenin-fed rats, suggesting an increased precursor pool of biliary cholesterol in these animals. Maximal phospholipid output only increased by 43% in diosgenin-fed rats, whereas bile salt output remained at control levels. The kinetics of glutamic oxalacetic: transaminase, lactic dehydrogenase, and alkaline phosphatase activities in bile showed a significantly faster release in control than in diosgenin-fed rats, After 30 min of hp travenous taurocholate infusion, necrotic hepatocytes were significantly increased in control animals.jlr Preservation of bile secretory functions and hepatocellular cytoprotection by diosgenin against the intravenous infusion of toxic doses of taurocholate was associated with an increased concentration of cholesterol and sphingomyelin in the canalicular membrane. The increase of biliary cholesterol output induced by diosgenin was correlated to the enhanced concentration of cholesterol in the canalicular membrane.
- ItemRelevance of Niemann-Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice(WILEY, 2002) Amigo, L; Mendoza, H; Castro, J; Quinones, V; Miquel, JF; Zanlungo, SReceptor-mediated endocytosis is one of the major mechanisms for uptake of lipoprotein cholesterol in the liver. Because Niemann-Pick C1 (NPC1) protein is a key component in the intracellular distribution of cholesterol obtained from lipoproteins by the endocytic pathway, it may play a critical role in controlling plasma lipoprotein cholesterol and its biliary secretion. A murine model of Niemann-Pick type C disease (NPC), the NPC1-deficient [NPC1 (- / -)] mouse, was used to evaluate the relevance of hepatic NPC1 expression in regulating plasma lipoprotein cholesterol profile and biliary lipid secretion under chow and high-cholesterol diets. Total plasma cholesterol concentrations were increased in NPC1 (- / -) mice compared with wild-type mice when both mouse strains were fed chow or high-cholesterol diets. The increased plasma cholesterol levels found in NPC1 (- / -) mice were mostly due to elevated cholesterol content in larger and more heterogeneous HDL particles. On the chow diet, biliary lipid secretion was not impaired by NPC1 deficiency. Furthermore, chow-fed NPC1 (- / -) mice showed a small, but significant, increase in biliary cholesterol secretion. On the high-cholesterol diet, wild-type mice increased biliary cholesterol output, whereas NPC1 (- / -) mice did not. Finally, hepatic NPCI overexpression by adenovirus-mediated gene transfer increased biliary cholesterol secretion by 100% to 150% in both wild-type mice and cholesterol-fed NPC1 (- / -) mice. In conclusion, hepatic NPC1 expression is an important factor for regulating plasma HDL cholesterol levels and biliary cholesterol secretion in mice.
- ItemSterol carrier protein 2 gene transfer changes lipid metabolism and enterohepatic sterol circulation in mice(W B SAUNDERS CO, 2000) Zanlungo, S; Amigo, L; Mendoza, H; Miquel, JF; Vio, C; Glick, JM; Rodriguez, A; Kozarsky, K; Quinones, V; Rigotti, A; Nervi, FBackground & Aims: Sterol carrier protein 2 (SCP-2) enhances sterol cycling and facilitates cholesterol translocation between intracellular organelles and plasma membrane in cultured cells, including hepatocytes. We examined the role of SCP-2 in hepatic cholesterol and lipid trafficking through the sinusoidal and canalicular secretory pathways of the liver in vivo. Methods: Recombinant adenovirus-mediated SCP-2 gene transfer was used to obtain hepatic overexpression of SCP-2 in C57BL/6 mice. Results: SCP-2 overexpression in the mouse liver resulted in an 8-fold increase of SCP-2 protein levels and determined various effects on lipid metabolism. It decreased high-density lipoprotein cholesterol and increased low-density lipoprotein (LDL) cholesterol concentrations. The expressions of hepatic LDL receptor, apolipoprotein (apo) A-I, apoB, and apoE were decreased. SCP-2 overexpression also increased hepatic cholesterol concentration, associated with decreased cholesterol neosynthesis. Increased biliary cholesterol and bile acid secretion, bile acid pool size, and intestinal cholesterol absorption were also observed. Conclusions: These results indicate that modulation of SCP-2 expression in the liver determines important modifications on lipoprotein metabolism, hepatic cholesterol synthesis and storage, biliary lipid secretion, bile acid metabolism and intestinal cholesterol absorption.