Browsing by Author "Mishra, Vijay"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAlbumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1α(2020) Aljabali, Alaa A. A.; Bakshi, Hamid A.; Hakkim, Faruck L.; Haggag, Yusuf A.; Al-Batanyeh, Khalid M.; Al Zoubi, Mazhar S.; Al-Trad, Bahaa; Nasef, Mohamed M.; Satija, Saurabh; Mehta, Meenu; Pabreja, Kavita; Mishra, Vijay; Khan, Mohammed; Abobaker, Salem; Azzouz, Ibrahim M.; Dureja, Harish; Pabari, Ritesh M.; Dardouri, Ashref Ali K.; Kesharwani, Prashant; Gupta, Gaurav; Shukla, Shakti Dhar; Prasher, Parteek; Charbe, Nitin B.; Negi, Poonam; Kapoor, Deepak N.; Chellappan, Dinesh Kumar; da Silva, Mateus Webba; Thompson, Paul; Dua, Kamal; McCarron, Paul; Tambuwala, Murtaza M.Piceatannol (PIC) is known to have anticancer activity, which has been attributed to its ability to block the proliferation of cancer cells via suppression of the NF-kB signaling pathway. However, its effect on hypoxia-inducible factor (HIF) is not well known in cancer. In this study, PIC was loaded into bovine serum albumin (BSA) by desolvation method as PIC-BSA nanoparticles (NPs). These PIC-BSA nanoparticles were assessed for in vitro cytotoxicity, migration, invasion, and colony formation studies and levels of p65 and HIF-1 alpha. Our results indicate that PIC-BSA NPs were more effective in downregulating the expression of nuclear p65 and HIF-1 alpha in colon cancer cells as compared to free PIC. We also observed a significant reduction in inflammation induced by chemical colitis in mice by PIC-BSA NPs. Furthermore, a significant reduction in tumor size and number of colon tumors was also observed in the murine model of colitis-associated colorectal cancer, when treated with PIC-BSA NPs as compared to free PIC. The overall results indicate that PIC, when formulated as PIC-BSA NPs, enhances its therapeutic potential. Our work could prompt further research in using natural anticancer agents as nanoparticels with possible human clinical trails. This could lead to the development of a new line of safe and effective therapeutics for cancer patients.
- ItemAn overview of vaccine development for COVID-19(2021) Shahcheraghi, Seyed H.; Ayatollahi, Jamshid; Aljabali, Alaa A. A.; Shastri, Madhur D.; Shukla, Shakti D.; Chellappan, Dinesh K.; Jha, Niraj K.; Anand, Krishnan; Katari, Naresh K.; Mehta, Meenu; Satija, Saurabh; Dureja, Harish; Mishra, Vijay; Almutary, Abdulmajeed G.; Alnuqaydan, Abdullah M.; Charbe, Nitin; Prasher, Parteek; Gupta, Gaurav; Dua, Kamal; Lotfi, Marzieh; Bakshi, Hamid A.; Tambuwala, Murtaza M.The COVID-19 pandemic continues to endanger world health and the economy. The causative SARS-CoV-2 coronavirus has a unique replication system. The end point of the COVID-19 pandemic is either herd immunity or widespread availability of an effective vaccine. Multiple candidate vaccines - peptide, virus-like particle, viral vectors (replicating and nonreplicating), nucleic acids (DNA or RNA), live attenuated virus, recombinant designed proteins and inactivated virus - are presently under various stages of expansion, and a small number of vaccine candidates have progressed into clinical phases. At the time of writing, three major pharmaceutical companies, namely Pfizer and Moderna, have their vaccines under mass production and administered to the public. This review aims to investigate the most critical vaccines developed for COVID-19 to date.
- ItemBiomedical applications of three-dimensional bioprinted craniofacial tissue engineering(WILEY, 2022) Charbe, Nitin Bharat; Tambuwala, Murtaza; Palakurthi, Sushesh Srivatsa; Warokar, Amol; HronniC-JahjefendiC, Altijana; Bakshi, Hamid; Zacconi, Flavia C. M.; Mishra, Vijay; Khadse, Saurabh; Aljabali, Alaa A.; El-Tanani, Mohamed; Serrano-Aroca, Angel; Palakurthi, SrinathAnatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
- ItemDietary Crocin is Protective in Pancreatic Cancer while Reducing Radiation-Induced Hepatic Oxidative Damage(2020) Bakshi, Hamid A.; Al Zoubi, Mazhar S.; Faruck, Hakkim L.; Aljabali, Alaa A. A.; Rabi, Firas A.; Hafiz, Amin A.; Al-Batanyeh, Khalid M.; Al-Trad, Bahaa; Ansari, Prawej; Nasef, Mohamed M.; Charbe, Nitin B.; Satija, Saurabh; Mehta, Meenu; Mishra, Vijay; Gupta, Gaurav; Abobaker, Salem; Negi, Poonam; Azzouz, Ibrahim M.; Dardouri, Ashref Ali K.; Dureja, Harish; Prasher, Parteek; Chellappan, Dinesh K.; Dua, Kamal; Da Silva, Mateus Webba; El Tanani, Mohamed; McCarron, Paul A.; Tambuwala, Murtaza M.Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer.
- ItemDynamics of Prolyl Hydroxylases Levels During Disease Progression in Experimental Colitis(2019) Bakshi, Hamid A.; Mishra, Vijay; Satija, Saurabh; Mehta, Meenu; Hakkim, Faruk L.; Kesharwani, Prashant; Dua, Kamal; Chellappan, Dinesh K.; Charbe, Nitin B.; Shrivastava, Garima; Rajeshkumar, S.; Aljabali, Alaa A.; Al-Trad, Bahaa; Pabreja, Kavita; Tambuwala, Murtaza M.Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD.
- ItemProtein and peptide delivery to lungs by using advanced targeted drug delivery(2022) Chellappan, Dinesh Kumar; Prasher, Parteek; Saravanan, Vilashini; Yee, Vanessa See Vern; Chi, Wendy Chai Wen; Wong, Jia Wei; Wong, Joon Kang; Wong, Jing Tong; Wan, Wai; Chellian, Jestin; Molugulu, Nagashekhara; Prabu, Sakthivel Lakshmana; Ibrahim, Rania; Darmarajan, Thiviya; Candasamy, Mayuren; Singh, Pankaj Kumar; Mishra, Vijay; Shastri, Madhur D.; Zacconi, Flavia C. M.; Chakraborty, Amlan; Mehta, Meenu; Gupta, Piyush Kumar; Dureja, Harish; Gulati, Monica; Singh, Sachin Kumar; Gupta, Gaurav; Jha, Niraj Kumar; Oliver, Brian Gregory George; Dua, KamalThe challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
- ItemTargeting LIN28: a new hope in prostate cancer theranostics(2021) Shrivastava, Garima; Aljabali, Alaa A. A.; Shahcheraghi, Seyed Hossein; Lotfi, Marzieh; Shastri, Madhur D.; Shukla, Shakti D.; Chellappan, Dinesh K.; Jha, Niraj Kumar; Anand, Krishnan; Dureja, Harish; Pabari, Ritesh M.; Mishra, Vijay; Almutary, Abdulmajeed G.; Alnuqaydan, Abdullah M.; Charbe, Nitin; Prasher, Parteek; Negi, Poonam; Goyal, Rohit; Dua, Kamal; Gupta, Gaurav; Serrano-Aroca, Angel; Bahar, Bojlul; Barh, Debmalya; Panda, Pritam Kumar; Takayama, Kazuo; Lundstorm, Kenneth; McCarron, Paul; Bakshi, Hamid; Tambuwala, Murtaza M.The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.