Browsing by Author "Montaño Castañeda, Jairo Alonso"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNew enhanced hybrid glulam-framed OSB wall for tall timber buildings(Elsevier Ltd, 2024) Carrero, Tulio; Montaño Castañeda, Jairo Alonso; Pérez, Luis; Doudak, Ghasan; Santa María Oyanedel, Hernan; Chacón de la Cruz, Matías Fernando Nicolas; Guindos Bretones, PabloThe article covers the cyclic lateral performance of a new hybrid timber shear wall called GLUlam-Frame OSB (GLUFO), composed of glulam frames connected to OSB (Oriented-Strand Board) sheathing panels and conventional nails. The key constructive detail of this new wall relies in that the OSB sheathings are embedded at grooved glulam members, which largely enhance the lateral strength capacity and stiffness of the element than the conventional light-frame timber or Cross-Laminated Timber (CLT) walls. The experimental campaign includes the Framing-to-Panel (F2P) connections and full-scale wall testing under cyclic loads. The wall failed due to a horizontal tensile fracture along the top beam, mainly caused by insufficient nail spacing. However, the wall reached a lateral drift of 1.48 % and a ductility of 5.8, which could have been higher if the failure had not occurred. Moreover, the proposed wall is three times stronger and stiffer than a conventional CLT wall and comprises one-fourth of the wood amount (0.89 m3) compared to a CLT wall of similar strength capacity. Finally, the proposed wall was characterized by a nonlinear macro-Finite Element (FE) model, whose F2P connections were simulated with the MSTEW hysteretic model, and three Single-Degree-Of-Freedom (SDOF) models, each with a different hysteretic model from the literature (MSTEW, DowelType, and ASPID). All numerical models show an error of up to 8 % for the lateral strength capacity, while the SDOF models are more precise for the energy dissipation prediction, with a error lower than 4.3 % and R2 for their history over 99.5 %. Hence, both numerical models provide a feasible alternative to simulate this new wall prototype.
- ItemStatic and dynamic performance of direct hybrid connections of cross-laminated timber with steel, concrete and laminated strand lumber composites(2020) Carrero Roa, Tulio Enrique; Montaño Castañeda, Jairo Alonso; Santa María Oyanedel, Hernán; Guindos Bretones, PabloHybrid multistory buildings are every day more common in the construction industry. However, there is little understanding of the performance of the hybrid connections. In this research, the static and dynamic response of cross-laminated timber (CLT) composites combined with reinforced concrete (RC), hollow steel profiles and laminated strand lumber (LSL) has been investigated. In addition, the effects of posttensioning stresses as well as distinct types of connectors such as nails, self-tapping screws and self-tapping dowels has been accounted for. After experimental work, numerical modelling for simulating the static and dynamic behavior for these hybrid connections was also investigated. Results indicate that such massive timber composite connections behave reasonably similar to conventional timber connections, except in that inelastic deformations may increase up to 200%. In addition, it has been found that existing hysteretic models like the modified Stewart hysteretic model (MSTEW) fit for modelling purposes except that very asymmetric hysteretic behavior can be found for timber-concrete hybrid connections.