Browsing by Author "Motomura, Kenichiro"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemA key role for NLRP3 signaling in preterm labor and birth driven by the alarmin S100B(2023) Galaz, Jose; Motomura, Kenichiro; Romero, Roberto; Liu, Zhenjie; Garcia-Flores, Valeria; Tao, Li; Xu, Yi; Done, Bogdan; Arenas-Hernandez, Marcia; Kanninen, Tomi; Farias-Jofre, Marcelo; Miller, Derek; Tarca, Adi L.; Gomez-Lopez, NardhyPreterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.
- ItemAre B cells altered in the decidua of women with preterm or term labor?(2019) Leng, Yaozhu; Romero, Roberto; Xu, Yi; Galaz Alarcón, José; Slutsky, Rebecca; Arenas Hernández, Marcia; García Flores, Valeria; Motomura, Kenichiro; Hassan, Sonia S.; Reboldi, Andrea; Gómez López, Nardhy
- ItemCellular immune responses in amniotic fluid of women with preterm prelabor rupture of membranes(WALTER DE GRUYTER GMBH, 2020) Galaz, Jose; Romero, Roberto; Slutsky, Rebecca; Xu, Yi; Motomura, Kenichiro; Para, Robert; Pacora, Percy; Panaitescu, Bogdan; Hsu, Chaur Dong; Kacerovsky, Marian; Gomez Lopez, NardhyBackground: Preterm birth is the leading cause of perinatal morbidity and mortality. Preterm prelabor rupture of membranes (pPROM) occurs in 30% of preterm births; thus, this complication is a major contributor to maternal and neonatal morbidity. However, the cellular immune responses in amniotic fluid of women with pPROM have not been investigated.
- ItemClarithromycin prevents preterm birth and neonatal mortality by dampening alarmin-induced maternal–fetal infammation in mice(2022) Galaz, José; Romero, Roberto; Arenas-Hernandez, Marcia; Farías Jofré, Marcelo Enrique; Motomura, Kenichiro; Liu, Zhenjie; Kawahara, Naoki; Demery-Poulos, Catherine; Liu, Tzu N.; Padron, Justin; Panaitescu, Bogdan; Gomez-Lopez, NardhyBackground: One of every four preterm neonates is born to a woman with sterile intra-amniotic inflammation (inflammatory process induced by alarmins); yet, this clinical condition still lacks treatment. Herein, we utilized an established murine model of sterile intra-amniotic inflammation induced by the alarmin high-mobility group box-1 (HMGB1) to evaluate whether treatment with clarithromycin prevents preterm birth and adverse neonatal outcomes by dampening maternal and fetal inflammatory responses. Methods: Pregnant mice were intra-amniotically injected with HMGB1 under ultrasound guidance and treated with clarithromycin or vehicle control, and pregnancy and neonatal outcomes were recorded (n = 15 dams each). Additionally, amniotic fluid, placenta, uterine decidua, cervix, and fetal tissues were collected prior to preterm birth for determination of the inflammatory status (n = 7–8 dams each). Results: Clarithromycin extended the gestational length, reduced the rate of preterm birth, and improved neonatal mortality induced by HMGB1. Clarithromycin prevented preterm birth by interfering with the common cascade of parturition as evidenced by dysregulated expression of contractility-associated proteins and inflammatory mediators in the intra-uterine tissues. Notably, clarithromycin improved neonatal survival by dampening inflammation in the placenta as well as in the fetal lung, intestine, liver, and spleen. Conclusions: Clarithromycin prevents preterm birth and improves neonatal survival in an animal model of sterile intra-amniotic inflammation, demonstrating the potential utility of this macrolide for treating women with this clinical condition, which currently lacks a therapeutic intervention.
- ItemClinical chorioamnionitis at term IX : in vivo evidence of intra-amniotic inflammasome activation(2019) Gomez-López, Nardhy; Romero, Roberto; Maymon, Ely; Kusanovic, Juan Pedro; Panaitescu, Bogdan; Miller, Derek; Pacora, Percy; Tarca, Adi L.; Motomura, Kenichiro; Erez, Offer; Jung, Eunjung J.; Hassan, Sonia S.; Hsu, Chaur Dong
- ItemFetal and maternal NLRP3 signaling is required for preterm labor and birth(AMER SOC CLINICAL INVESTIGATION INC, 2022) Motomura, Kenichiro; Romero, Roberto; Galaz, Jose; Tao, Li; Garcia-Flores, Valeria; Xu, Yi; Done, Bogdan; Arenas-Hernandez, Marcia; Miller, Derek; Gutierrez-Contreras, Pedro; Farias-Jofre, Marcelo; Aras, Siddhesh; Grossman, Lawrence, I; Tarca, Adi L.; Gomez-Lopez, NardhyPreterm birth is the leading cause of neonatal morbidity and mortality worldwide. One of every 4 preterm neonates is born to a mother with intra-amniotic inflammation driven by invading bacteria. However, the molecular mechanisms underlying this hostile immune response remain unclear. Here, we used a translationally relevant model of preterm birth in Nlrp3-deficient and-sufficient pregnant mice to identify what we believe is a previously unknown dual role for the NLRP3 pathway in the fetal and maternal signaling required for the premature onset of the labor cascade leading to fetal injury and neonatal death. Specifically, the NLRP3 sensor molecule and/or inflammasome is essential for triggering intra-amniotic and decidual inflammation, fetal membrane activation, uterine contractility, and cervical dilation. NLRP3 also regulates the functional status of neutrophils and macrophages in the uterus and decidua, without altering their influx, as well as maternal systemic inflammation. Finally, both embryo transfer experimentation and heterozygous mating systems provided mechanistic evidence showing that NLRP3 signaling in both the fetus and the mother is required for the premature activation of the labor cascade. These data provide insights into the mechanisms of fetal-maternal dialog in the syndrome of preterm labor and indicate that targeting the NLRP3 pathway could prevent adverse perinatal outcomes.
- ItemMicrobial burden and inflammasome activation in amniotic fluid of patients with preterm prelabor rupture of membranes(2020) Theis, Kevin R.; Romero, Roberto; Motomura, Kenichiro; Galaz, Jose; Winters, Andrew D.; Pacora, Percy; Miller, Derek; Slutsky, Rebecca; Florova, Violetta; Levenson, Dustyn; Para, Robert; Varrey, Aneesha; Kacerovsky, Marian; Hsu, Chaur-Dong; Gomez-Lopez, NardhyBackground: Intra-amniotic inflammation, which is associated with adverse pregnancy outcomes, can occur in the presence or absence of detectable microorganisms, and involves activation of the inflammasome. lntra-amniotic inflammasome activation has been reported in clinical chorioamnionitis at term and preterm labor with intact membranes, but it has not yet been investigated in women with preterm prelabor rupture of membranes (preterm PROM) in the presence/absence of detectable microorganisms. The aim of this study was to determine whether, among women with preterm PROM, there is an association between detectable microorganisms in amniotic fluid and intra-amniotic inflammation, and whether intra-amniotic inflammasome activation correlates with microbial burden.
- ItemNo Consistent Evidence for Microbiota in Murine Placental and Fetal Tissues(2020) Theis, Kevin R.; Romero, Roberto; Greenberg, Jonathan M.; Winters, Andrew D.; Garcia-Flores, Valeria; Motomura, Kenichiro; Ahmad, Madison M.; Galaz, Jose; Arenas-Hernandez, Marcia; Gomez-Lopez, NardhyThe existence of a placental microbiota and in utero colonization of the fetus have been the subjects of recent debate. The objective of this study was to determine whether the placental and fetal tissues of mice harbor bacterial communities. Bacterial profiles of the placenta and fetal brain, lung, liver, and intestine samples were characterized through culture, quantitative real-time PCR (qPCR), and 16S rRNA gene sequencing. These profiles were compared to those of the maternal mouth, lung, liver, uterus, cervix, vagina, and intestine, as well as to background technical controls. Positive bacterial cultures from placental and fetal tissue samples were rare; of the 165 total bacterial cultures of placental tissue samples from the 11 mice included in this study, only nine yielded at least a single colony, and five of those nine positive cultures came from a single mouse. Cultures of fetal intestinal tissue samples yielded just a single bacterial isolate, Staphylococcus hominis, a common skin bacterium. Bacterial loads of placental and fetal brain, lung, liver, and intestinal tissues were not higher than those of DNA contamination controls and did not yield substantive 16S rRNA gene sequencing libraries. From all placental or fetal tissue samples (n = 51), there was only a single bacterial isolate that came from a fetal brain sample having a bacterial load higher than that of contamination controls and that was identified in sequence-based surveys of at least one of its corresponding maternal samples. Therefore, using multiple modes of microbiological inquiry, there was not consistent evidence of bacterial communities in the placental and fetal tissues of mice.
- ItemThe effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation(2023) Motomura, Kenichiro; Miller, Derek; Galaz, Jose; Liu, Tzu Ning; Romero, Roberto; Gomez-Lopez, NardhyProgesterone is a sex steroid hormone that plays a critical role in the establishment and maintenance of pregnancy. This hormone drives numerous maternal physiological adaptations to ensure the continuation of pregnancy and to facilitate fetal growth, including broad and potent modulation of the maternal immune system to promote maternal-fetal tolerance. In this brief review, we provide an overview of the immunomodulatory functions of progesterone in the decidua, placenta, myometrium, and maternal circulation during pregnancy. Specifically, we summarize current evidence of the regulated functions of innate and adaptive immune cells induced by progesterone and its downstream effector molecules in these compartments, including observations in human pregnancy and in animal models. Our review highlights the gaps in knowledge of interactions between progesterone and maternal cellular immunity that may direct future research.