Browsing by Author "Neji, Radhouene"
Now showing 1 - 20 of 26
Results Per Page
Sort Options
- Item3D Cartesian fast interrupted steady-state (FISS) imaging(2019) Küstner, Thomas; Bustin, Aurélien; Jaubert, Olivier; Neji, Radhouene; Prieto Vásquez, Claudia; Botnar, René Michael
- Item3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging(2021) Milotta, Giorgia; Munoz, Camila; Kunze, Karl P.; Neji, Radhouene; Figliozzi, Stefano; Chiribiri, Amedeo; Hajhosseiny, R.; Masci, Pier Giorgio; Prieto Vásquez, Claudia; Botnar, René MichaelAbstract Purpose To develop a free-breathing whole-heart isotropic-resolution 3D late gadolinium enhancement (LGE) sequence with Dixon-encoding, which provides co-registered 3D grey-blood phase-sensitive inversion-recovery (PSIR) and complementary 3D fat volumes in a single scan of < 7 min. Methods A free-breathing 3D PSIR LGE sequence with dual-echo Dixon readout with a variable density Cartesian trajectory with acceleration factor of 3 is proposed. Image navigators are acquired to correct both inversion recovery (IR)-prepared and reference volumes for 2D translational respiratory motion, enabling motion compensated PSIR reconstruction with 100% respiratory scan efficiency. An intermediate PSIR reconstruction is performed between the in-phase echoes to estimate the signal polarity which is subsequently applied to the IR-prepared water volume to generate a water grey-blood PSIR image. The IR-prepared water volume is obtained using a water/fat separation algorithm from the corresponding dual-echo readout. The complementary fat-volume is obtained after water/fat separation of the reference volume. Ten patients (6 with myocardial scar) were scanned with the proposed water/fat grey-blood 3D PSIR LGE sequence at 1.5 T and compared to breath-held grey-blood 2D LGE sequence in terms of contrast ratio (CR), contrast-to-noise ratio (CNR), scar depiction, scar transmurality, scar mass and image quality. Results Comparable CRs (p = 0.98, 0.40 and 0.83) and CNRs (p = 0.29, 0.40 and 0.26) for blood-myocardium, scar-myocardium and scar-blood respectively were obtained with the proposed free-breathing 3D water/fat LGE and 2D clinical LGE scan. Excellent agreement for scar detection, scar transmurality, scar mass (bias = 0.29%) and image quality scores (from 1: non-diagnostic to 4: excellent) of 3.8 ± 0.42 and 3.6 ± 0.69 (p > 0.99) were obtained with the 2D and 3D PSIR LGE approaches with comparable total acquisition time (p = 0.29). Similar agreement in intra and inter-observer variability were obtained for the 2D and 3D acquisition respectively. Conclusion The proposed approach enabled the acquisition of free-breathing motion-compensated isotropic-resolution 3D grey-blood PSIR LGE and fat volumes. The proposed approach showed good agreement with conventional 2D LGE in terms of CR, scar depiction and scan time, while enabling free-breathing acquisition, whole-heart coverage, reformatting in arbitrary views and visualization of both water and fat information.
- Item3D whole-heart isotropic-resolution motion-compensated joint T-1/T(2)mapping and water/fat imaging(2020) Milotta, Giorgia; Bustin, Aurelien; Jaubert, Olivier; Neji, Radhouene; Prieto Vásquez, Claudia; Botnar, René MichaelPurpose To develop a free-breathing isotropic-resolution whole-heart joint T1 and T2 mapping sequence with Dixon-encoding that provides coregistered 3D T1 and T2 maps and complementary 3D anatomical water and fat images in a single ~9 min scan. Methods Four interleaved dual-echo Dixon gradient echo volumes are acquired with a variable density Cartesian trajectory and different preparation pulses: 1) inversion recovery-preparation, 2) and 3) no preparations, and 4) T2 preparation. Image navigators are acquired to correct each echo for 2D translational respiratory motion; the 8 echoes are jointly reconstructed with a low-rank patch-based reconstruction. A water/fat separation algorithm is used to obtain water and fat images for each acquired volume. T1 and T2 maps are generated by matching the signal evolution of the water images to a simulated dictionary. Complementary bright-blood and fat volumes for anatomical visualization are obtained from the T2-prepared dataset. The proposed sequence was tested in phantom experiments and 10 healthy subjects and compared to standard 2D MOLLI T1 mapping, 2D balance steady-state free precession T2 mapping, and 3D T2-prepared Dixon coronary MR angiography. Results High linear correlation was found between T1 and T2 quantification with the proposed approach and phantom spin echo measurements (y = 1.1 × −11.68, R2 = 0.98; and y = 0.85 × +5.7, R2 = 0.99). Mean myocardial values of T1/T2 = 1116 ± 30.5 ms/45.1 ± 2.38 ms were measured in vivo. Biases of T1/T2 = 101.8 ms/−0.77 ms were obtained compared to standard 2D techniques. Conclusion The proposed joint T1/T2 sequence permitted the acquisition of motion-compensated isotropic-resolution 3D T1 and T2 maps and complementary coronary MR angiography and fat volumes, showing promising results in terms of T1 and T2 quantification and visualization of cardiac anatomy and pericardial fat.
- Item3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography(2017) Ginami, Giulia; Neji, Radhouene; Rashid, Imran; Chiribiri, Amedeo; Ismail, Tevfik F; Botnar, René Michael; Prieto Vásquez, ClaudiaAbstract Background Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. Methods The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD). Results Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence. Conclusions The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.Abstract Background Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. Methods The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD). Results Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence. Conclusions The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.Abstract Background Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. Methods The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD). Results Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence. Conclusions The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.
- ItemAccelerated high-resolution free-breathing 3D whole-heart T2-prepared black-blood and bright-blood cardiovascular magnetic resonance(2020) Correia, Teresa; Botnar, René Michael; Prieto Vásquez, Claudia; Ginami, Giulia; Rashid, Imran; Nordio, Giovanna; Hajhosseiny, R.; Ismail, Tevfik F.; Neji, RadhoueneAbstract Background The free-breathing 3D whole-heart T2-prepared Bright-blood and black-blOOd phase SensiTive inversion recovery (BOOST) cardiovascular magnetic resonance (CMR) sequence was recently proposed for simultaneous bright-blood coronary CMR angiography and black-blood late gadolinium enhancement (LGE) imaging. This sequence enables simultaneous visualization of cardiac anatomy, coronary arteries and fibrosis. However, high-resolution (< 1.4 × 1.4 × 1.4 mm3) fully-sampled BOOST requires long acquisition times of ~ 20 min. Methods In this work, we propose to extend a highly efficient respiratory-resolved motion-corrected reconstruction framework (XD-ORCCA) to T2-prepared BOOST to enable high-resolution 3D whole-heart coronary CMR angiography and black-blood LGE in a clinically feasible scan time. Twelve healthy subjects were imaged without contrast injection (pre-contrast BOOST) and 10 patients with suspected cardiovascular disease were imaged after contrast injection (post-contrast BOOST). A quantitative analysis software was used to compare accelerated pre-contrast BOOST against the fully-sampled counterpart (vessel sharpness and length of the left and right coronary arteries). Moreover, three cardiologists performed diagnostic image quality scoring for clinical 2D LGE and both bright- and black-blood 3D BOOST imaging using a 4-point scale (1–4, non-diagnostic–fully diagnostic). A two one-sided test of equivalence (TOST) was performed to compare the pre-contrast BOOST images. Nonparametric TOST was performed to compare post-contrast BOOST image quality scores. Results The proposed method produces images from 3.8 × accelerated non-contrast-enhanced BOOST acquisitions with comparable vessel length and sharpness to those obtained from fully- sampled scans in healthy subjects. Moreover, in terms of visual grading, the 3D BOOST LGE datasets (median 4) and the clinical 2D counterpart (median 3.5) were found to be statistically equivalent (p < 0.05). In addition, bright-blood BOOST images allowed for visualization of the proximal and middle left anterior descending and right coronary sections with high diagnostic quality (mean score > 3.5). Conclusions The proposed framework provides high‐resolution 3D whole-heart BOOST images from a single free-breathing acquisition in ~ 7 min.
- ItemAutomated detection of cardiac rest period for trigger delay calculation for image-based navigator coronary magnetic resonance angiography(NLM (Medline), 2023) Wood, Gregory; Uglebjerg Pedersen, Alexandra; Kunze, Karl P; Neji, Radhouene; Hajhosseiny, Reza; Wetzl, Jens; Yoon, Seung Su; Schmidt, Michaela; Norgaard, Bjarne Linde; Prieto Vásquez, Claudia; Botnar, René Michael; Kim, Won YongBACKGROUND: Coronary magnetic resonance angiography (coronary MRA) is increasingly being considered as a clinically viable method to investigate coronary artery disease (CAD). Accurate determination of the trigger delay to place the acquisition window within the quiescent part of the cardiac cycle is critical for coronary MRA in order to reduce cardiac motion. This is currently reliant on operator-led decision making, which can negatively affect consistency of scan acquisition. Recently developed deep learning (DL) derived software may overcome these issues by automation of cardiac rest period detection. METHODS: Thirty individuals (female, n = 10) were investigated using a 0.9 mm isotropic image-navigator (iNAV)-based motion-corrected coronary MRA sequence. Each individual was scanned three times utilising different strategies for determination of the optimal trigger delay: (1) the DL software, (2) an experienced operator decision, and (3) a previously utilised formula for determining the trigger delay. Methodologies were compared using custom-made analysis software to assess visible coronary vessel length and coronary vessel sharpness for the entire vessel length and the first 4 cm of each vessel. RESULTS: There was no difference in image quality between any of the methodologies for determination of the optimal trigger delay, as assessed by visible coronary vessel length, coronary vessel sharpness for each entire vessel and vessel sharpness for the first 4 cm of the left mainstem, left anterior descending or right coronary arteries. However, vessel length of the left circumflex was slightly greater using the formula method. The time taken to calculate the trigger delay was significantly lower for the DL-method as compared to the operator-led approach (106 ± 38.0 s vs 168 ± 39.2 s, p < 0.01, 95% CI of difference 25.5-98.1 s). CONCLUSIONS: Deep learning-derived automated software can effectively and efficiently determine the optimal trigger delay for acquisition of coronary MRA and thus may simplify workflow and improve reproducibility.
- ItemEfficient non-contrast enhanced 3D Cartesian cardiovascular magnetic resonance angiography of the thoracic aorta in 3 min(2022) Fotaki, Anastasia; Munoz, Camila; Emanuel, Yaso; Hua, Alina; Bosio, Filippo; Kunze, Karl P.; Neji, Radhouene; Masci, Pier Giorgio; Botnar, Rene M.; Prieto, ClaudiaBackground: The application of cardiovascular magnetic resonance angiography (CMRA) for the assessment of thoracic aortic disease is often associated with prolonged and unpredictable acquisition times and residual motion artefacts. To overcome these limitations, we have integrated undersampled acquisition with image-based navigators and inline non-rigid motion correction to enable a free-breathing, contrast-free Cartesian CMRA framework for the visualization of the thoracic aorta in a short and predictable scan of 3 min.
- ItemEnd-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA(2021) Qi, Haikun; Hajhosseiny, Reza; Cruz, Gastao; Kuestner, Thomas; Kunze, Karl; Neji, Radhouene; Botnar, René Michael; Prieto Vásquez, ClaudiaPurpose: To develop an end-to-end deep learning technique for nonrigid motion-corrected (MoCo) reconstruction of ninefold undersampled free-breathing whole-heart coronary MRA (CMRA).
- ItemEvaluation of accelerated motion-compensated 3d water/fat late gadolinium enhanced MR for atrial wall imaging(SPRINGER, 2021) Munoz, Camila; Sim, Iain; Neji, Radhouene; Kunze, Karl P.; Masci, Pier Giorgio; Schmidt, Michaela; O'Neill, Mark; Williams, Steven; Botnar, Rene M.; Prieto, ClaudiaObjective 3D late gadolinium enhancement (LGE) imaging is a promising non-invasive technique for the assessment of atrial fibrosis. However, current techniques result in prolonged and unpredictable scan times and high rates of non-diagnostic images. The purpose of this study was to compare the performance of a recently proposed accelerated respiratory motion-compensated 3D water/fat LGE technique with conventional 3D LGE for atrial wall imaging. Materials and methods 18 patients (age: 55.7 +/- 17.1 years) with atrial fibrillation underwent conventional diaphragmatic navigator gated inversion recovery (IR)-prepared 3D LGE (dNAV) and proposed image-navigator motion-corrected water/fat IR-prepared 3D LGE (iNAV) imaging. Images were assessed for image quality and presence of fibrosis by three expert observers. The scan time for both techniques was recorded. Results Image quality scores were improved with the proposed compared to the conventional method (iNAV: 3.1 +/- 1.0 vs. dNAV: 2.6 +/- 1.0, p = 0.0012, with 1: Non-diagnostic to 4: Full diagnostic). Furthermore, scan time for the proposed method was significantly shorter with a 59% reduction is scan time (4.5 +/- 1.2 min vs. 10.9 +/- 3.9 min, p < 0.0001). The images acquired with the proposed method were deemed as inconclusive less frequently than the conventional images (expert 1/expert 2: 4/7 dNAV and 2/4 iNAV images inconclusive). Discussion The motion-compensated water/fat LGE method enables atrial wall imaging with diagnostic quality comparable to the current conventional approach with a significantly shorter scan of about 5 min.
- ItemFive-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction(2019) Bustin, Aurelien; Ginami, Giulia; Cruz, Gastao; Correia, Teresa; Ismail, Tevfik F.; Rashid, Imran; Neji, Radhouene; Botnar, René Michael; Prieto Vásquez, Claudia
- ItemFree-breathing, Contrast Agent-free Whole-Heart MTC-BOOST Imaging: Single-Center Validation Study in Adult Congenital Heart Disease(2023) Fotaki, Anastasia; Pushparajah, Kuberan; Hajhosseiny, Reza; Schneider, Alina; Alam, Harith; Ferreira, Joana; Neji, Radhouene; Kunze, Karl P.; Frigiola, Alessandra; Botnar, Rene M.; Prieto, ClaudiaPurpose: To assess the clinical performance of the three-dimensional, free-breathing, Magnetization Transfer Contrast Bright-and-black blOOd phase-SensiTive (MTC-BOOST) sequence in adult congenital heart disease (ACHD).Materials and Methods: In this prospective study, participants with ACHD undergoing cardiac MRI between July 2020 and March 2021 were scanned with the clinical T2-prepared balanced steady-state free precession sequence and proposed MTC-BOOST sequence. Four cardiologists scored their diagnostic confidence on a four-point Likert scale for sequential segmental analysis on images acquired with each sequence. Scan times and diagnostic confidence were compared using the Mann-Whitney test. Coaxial vascular dimensions at three anatomic landmarks were measured, and agreement between the research sequence and the corresponding clinical sequence was assessed with Bland-Altman analysis.Results: The study included 120 participants (mean age, 33 years +/- 13 [SD]; 65 men). The mean acquisition time of the MTC-BOOST sequence was significantly lower compared with that of the conventional clinical sequence (9 minutes +/- 2 vs 14 minutes +/- 5; P < .001). Diagnostic confidence was higher for the MTC-BOOST sequence compared with the clinical sequence (mean, 3.9 +/- 0.3 vs 3.4 +/- 0.7; P < .001). Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and clinical vascu-lar measurements.Conclusion: The MTC-BOOST sequence provided efficient, high-quality, and contrast agent-free three-dimensional whole-heart imag-ing in ACHD, with shorter, more predictable acquisition time and improved diagnostic confidence compared with the reference stan-dard clinical sequence.
- ItemFully self-gated free-running 3D Cartesian cardiac CINE with isotropic whole-heart coverage in less than 2 min(2021) Küstner, Thomas; Bustin, Aurelien; Jaubert, Olivier; Hajhosseiny, Reza; Masci, Pier Giorgio; Neji, Radhouene; Botnar, René Michael; Prieto Vásquez, Claudia
- ItemHigh-resolution non-contrast free-breathing coronary cardiovascular magnetic resonance ngiography for detection of coronary artery disease: validation against invasive coronary angiography(2022) Nazir, Muhummad Sohaib; Bustin, Aurelien; Hajhosseiny, Reza; Yazdani, Momina; Ryan, Matthew; Vergani, Vittoria; Neji, Radhouene; Kunze, Karl P.; Nicol, Edward; Masci, Pier Giorgio; Perera, Divaka; Plein, Sven; Chiribiri, Amedeo; Botnar, Rene; Prieto, ClaudiaBackground: Coronary artery disease (CAD) is the single most common cause of death worldwide. Recent technological developments with coronary cardiovascular magnetic resonance angiography (CCMRA) allow high-resolution free-breathing imaging of the coronary arteries at submillimeter resolution without contrast in a predictable scan time of similar to 10 min. The objective of this study was to determine the diagnostic accuracy of high-resolution CCMRA for CAD detection against the gold standard of invasive coronary angiography (ICA).
- ItemHigh-resolution non-contrast free-breathing coronary cardiovascular magnetic resonance angiography for detection of coronary artery disease : validation against invasive coronary angiography(2022) Nazir, Muhummad S.; Bustin, Aurélien; Hajhosseiny, Reza; Yazdani, Momina; Ryan, Matthew; Vergani, Vittoria; Neji, Radhouene; Kunze, Karl P.; Perera, Divaka; Botnar, René Michael; Prieto Vásquez, ClaudiaCoronary artery disease (CAD) is the single most common cause of death worldwide. Recent technological developments with coronary cardiovascular magnetic resonance angiography (CCMRA) allow high-resolution free-breathing imaging of the coronary arteries at submillimeter resolution without contrast in a predictable scan time of ~ 10 min. The objective of this study was to determine the diagnostic accuracy of high-resolution CCMRA for CAD detection against the gold standard of invasive coronary angiography (ICA). Methods: Forty-five patients (15 female, 62 ± 10 years) with suspected CAD underwent sub-millimeter-resolution (0.6 mm3) non-contrast CCMRA at 1.5T in this prospective clinical study from 2019–2020. Prior to CCMR, patients were given an intravenous beta blockers to optimize heart rate control and sublingual glyceryl trinitrate to promote coronary vasodilation. Obstructive CAD was defined by lesions with ≥ 50% stenosis by quantitative coronary angiography on ICA. Results: The mean duration of image acquisition was 10.4 ± 2.1 min. On a per patient analysis, the sensitivity, specificity, positive predictive value and negative predictive value (95% confidence intervals) were 95% (75–100), 54% (36–71), 60% (42–75) and 93% (70–100), respectively. On a per vessel analysis the sensitivity, specificity, positive predictive value and negative predictive value (95% confidence intervals) were 80% (63–91), 83% (77–88), 49% (36–63) and 95% (90–98), respectively. Conclusion: As an important step towards clinical translation, we demonstrated a good diagnostic accuracy for CAD detection using high-resolution CCMRA, with high sensitivity and negative predictive value. The positive predictive value is moderate, and combination with CMR stress perfusion may improve the diagnostic accuracy. Future multicenter evaluation is now required
- ItemHighly efficient free-breathing 3D whole-heart imaging in 3-min: single center study in adults with congenital heart disease(2024) Fotaki, Anastasia; Pushparajah, Kuberan; Rush, Christopher; Muñoz, Camila; Velasco, Carlos; Neji, Radhouene; Kunze, Karl P.; Botnar, René Michael; Prieto Vásquez, Claudia Del CarmenBackground: Three dimensional, whole-heart (3DWH) MRI is an established non-invasive imaging modality in patients with congenital heart disease (CHD) for the diagnosis of cardiovascular morphology and for clinical decision making. Current techniques utilise diaphragmatic navigation (dNAV) for respiratory motion correction and gating and are frequently limited by long acquisition times. This study proposes and evaluates the diagnostic performance of a respiratory gating-free framework, which considers respiratory image-based navigation (iNAV), and highly accelerated variable density Cartesian sampling in concert with non-rigid motion correction and low-rank patch-based denoising (iNAV-3DWH-PROST). The method is compared to the clinical dNAV-3DWH sequence in adult patients with CHD. Methods: In this prospective single center study, adult patients with CHD who underwent the clinical dNAV-3DWH MRI were also scanned with the iNAV-3DWH-PROST. Diagnostic confidence (4-point Likert scale) and diagnostic accuracy for common cardiovascular lesions was assessed by three readers. Scan times and diagnostic confidence were compared using the Wilcoxon-signed rank test. Co-axial vascular dimensions at three anatomic landmarks were measured, and agreement between the research and the corresponding clinical sequence was assessed with Bland-Altman analysis. Results: The study included 60 participants (mean age ± [SD]: 33 ± 14 years; 36 men). The mean acquisition time of iNAV-3DWH-PROST was significantly lower compared with the conventional clinical sequence (3.1 ± 0.9 min vs 13.9 ± 3.9 min, p < 0.0001). Diagnostic confidence was higher for the iNAV-3DWH-PROST sequence compared with the clinical sequence (3.9 ± 0.2 vs 3.4 ± 0.8, p < 0.001), however there was no significant difference in diagnostic accuracy. Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and the clinical vascular measurements. Conclusions: The iNAV-3DWH-PROST framework provides efficient, high quality and robust 3D whole-heart imaging in significantly shorter scan time compared to the standard clinical sequence.
- ItemHighly efficient image navigator based 3D whole-heart cardiac MRA at 0.55T(2024) Castillo-Passi, Carlos; Kunze, Karl P.; Crabb, Michael G.; Munoz, Camila; Fotaki, Anastasia; Neji, Radhouene; Irarrazaval, Pablo; Prieto, Claudia; Botnar, Rene M.PurposeTo develop and evaluate a highly efficient free-breathing and contrast-agent-free three-dimensional (3D) whole-heart Cardiac Magnetic Resonance Angiography (CMRA) sequence at 0.55T.MethodsFree-breathing whole-heart CMRA has been previously proposed at 1.5 and 3T. Direct application of this sequence to 0.55T is not possible due to changes in the magnetic properties of the tissues. To enable free-breathing CMRA at 0.55T, pulse sequence design and acquisition parameters of a previously proposed whole-heart CMRA framework are optimized via Bloch simulations. Image navigators (iNAVs) are used to enable nonrigid respiratory motion-correction and 100% respiratory scan efficiency. Patch-based low-rank denoising is employed to accelerate the scan and account for the reduced signal-to-noise ratio at 0.55T. The proposed approach was evaluated on 11 healthy subjects. Image quality was assessed by a clinical expert (1: poor to 5: excellent) for all intrapericardiac structures. Quantitative evaluation was performed by assessing the vessel sharpness of the proximal right coronary artery (RCA).ResultsOptimization resulted in an imaging flip angle of 110 degrees$$ 11{0}<^>{\circ } $$, fat saturation flip angle of 180 degrees$$ 18{0}<^>{\circ } $$, and six k-space lines for iNAV encoding. The relevant cardiac structures and main coronary arteries were visible in all subjects, with excellent image quality (mean 4.9/5.0$$ 4.9/5.0 $$) and minimal artifacts (mean 4.9/5.0$$ 4.9/5.0 $$), with RCA vessel sharpness (50.3%+/- 9.8%$$ 50.3\%\pm 9.8\% $$) comparable to previous studies at 1.5T.ConclusionThe proposed approach enables 3D whole-heart CMRA at 0.55T in a 6-min scan (5.9 +/- 0.7 min$$ 5.9\pm 0.7\;\min $$), providing excellent image quality, minimal artifacts, and comparable vessel sharpness to previous 1.5T studies. Future work will include the evaluation of the proposed approach in patients with cardiovascular disease.
- ItemMotion-corrected simultaneous cardiac positron emission tomography and coronary MR angiography with high acquisition efficiency(2018) Munoz, Camila; Neji, Radhouene; Cruz, Gastão; Mallia, Andrew; Jeljeli, Sami; Reader, Andrew J.; Botnar, René Michael; Prieto Vásquez, Claudia
- ItemMotion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation(2018) Muñoz, Camila; Kunze, Karl P.; Neji, Radhouene; Vitadello, Teresa; Rischpler, Christoph; Botnar, René Michael; Nekolla, Stephan G.; Prieto Vásquez, ClaudiaPurpose: Cardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability (18F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO). Methods: A cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively. Results: Motion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images. Conclusion: The feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been demonstrated in 14 patients with CTO. Motion correction increased visible length and sharpness of the coronary arteries by CMRA, and improved delineation of the myocardium by 18F-FDG PET, resulting in good agreement with X-ray angiography and LGE-MRI.
- ItemMRI-Guided Motion-Corrected PET Image Reconstruction for Cardiac PET/MRI(SOC NUCLEAR MEDICINE INC, 2021) Munoz, Camila; Ellis, Sam; Nekolla, Stephan G.; Kunze, Karl P.; Vitadello, Teresa; Neji, Radhouene; Botnar, Rene M.; Schnabel, Julia A.; Reader, Andrew J.; Prieto, ClaudiaSimultaneous PET/MRI has shown potential for the comprehensive assessment of myocardial health from a single examination. Furthermore, MRI-derived respiratory motion information, when incorporated into the PET image reconstruction, has been shown to improve PET image quality. Separately, MRI-based anatomically guided PET image reconstruction has been shown to effectively denoise images, but this denoising has so far been demonstrated mainly in brain imaging. To date, the combined benefits of motion compensation and anatomic guidance have not been demonstrated for myocardial PET/MRI. This work addressed this lack by proposing a single cardiac PET/MRI image reconstruction framework that fully utilizes MRI-derived information to allow both motion compensation and anatomic guidance within the reconstruction. Methods: Fifteen patients underwent an F-18-FDG cardiac PET/MRI scan with a previously introduced acquisition framework. The MRI data processing and image reconstruction pipeline produces respiratory motion fields and a high-resolution respiratory motion-corrected MR image with good tissue contrast. This MRI-derived information was then included in a respiratory motion-corrected, cardiac-gated, anatomically guided image reconstruction of the simultaneously acquired PET data. Reconstructions were evaluated by measuring myocardial contrast and noise and were compared with images from several comparative intermediate methods using the components of the proposed framework separately. Results: Including respiratory motion correction, cardiac gating, and anatomic guidance significantly increased contrast. In particular, myocardiumto-blood pool contrast increased by 143% on average (P < 0.0001), compared with conventional uncorrected, non-guided PET images. Furthermore, anatomic guidance significantly reduced image noise, by 16.1%, compared with nonguided image reconstruction (P < 0.0001). Conclusion: The proposed framework for MRI-derived motion compensation and anatomic guidance of cardiac PET data significantly improved image quality compared with alternative reconstruction methods. Each component of the reconstruction pipeline had a positive impact on the final image quality. These improvements have the potential to improve clinical interpretability and diagnosis based on cardiac PET/MR images.
- ItemNon-rigid motion-compensated 3D whole-heart T2 mapping in a hybrid 3T PET-MR system(2024) Schneider, Alina; Munoz, Camila; Hua, Alina; Ellis, Sam; Jeljeli, Sami; Kunze, Karl P.; Neji, Radhouene; Reader, Andrew J.; Reyes, Eliana; Ismail, Tevfik F.; Botnar, Rene M.; Prieto, ClaudiaPurpose: Simultaneous PET-MRI improves inflammatory cardiac disease diagnosis. However, challenges persist in respiratory motion and mis-registration between free-breathing 3D PET and 2D breath-held MR images. We propose a free-breathing non-rigid motion-compensated 3D T-2-mapping sequence enabling whole-heart myocardial tissue characterization in a hybrid 3T PET-MR system and provides non-rigid respiratory motion fields to correct also simultaneously acquired PET data.Methods: Free-breathing 3D whole-heart T-2-mapping was implemented on a hybrid 3T PET-MRI system. Three datasets were acquired with different T-2-preparation modules (0, 28, 55 ms) using 3-fold under sampled variable-density Cartesian trajectory. Respiratory motion was estimated via virtual 3D image navigators, enabling multi-contrast non-rigid motion-corrected MR reconstruction. T-2-maps were computed using dictionary-matching. Approach was tested in phantom, 8 healthy subjects, 14 MR only and 2 PET-MR patients with suspected cardiac disease and compared with spin echo reference (phantom) and clinical 2D T-2-mapping (in-vivo).Results: Phantom results show a high correlation (R-2 = 0.996) between proposed approach and gold standard 2D T-2 mapping. In-vivo 3D T-2-mapping average values in healthy subjects (39.0 +/- 1.4 ms) and patients (healthy tissue) (39.1 +/- 1.4 ms) agree with conventional 2D T-2-mapping (healthy = 38.6 +/- 1.2 ms, patients = 40.3 +/- 1.7 ms). Bland-Altman analysis reveals bias of 1.8 ms and 95% limits of agreement (LOA) of -2.4-6 ms for healthy subjects, and bias of 1.3 ms and 95% LOA of -1.9 to 4.6 ms for patients.Conclusion: Validated efficient 3D whole-heart T-2-mapping at hybrid 3T PET-MRI provides myocardial inflammation characterization and non-rigid respiratory motion fields for simultaneous PET data correction. Comparable T-2 values were achieved with both 3D and 2D methods. Improved image quality was observed in the PET images after MR-based motion correction.