Browsing by Author "Newberg, HJ"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemA large, uniform sample of X-ray-emitting AGNs(2003) Anderson, SF; Voges, W; Margon, B; Trümper, J; Agüeros, MA; Boller, T; Collinge, MJ; Homer, L; Stinson, G; Strauss, MA; Annis, J; Gómez, P; Hall, PB; Nichol, RC; Richards, GT; Schneider, DP; Vanden Berk, DE; Fan, XH; Ivezic, Z; Munn, JA; Newberg, HJ; Richmond, MW; Weinberg, DH; Yanny, B; Bahcall, NA; Brinkmann, J; Fukugita, M; York, DGMany open questions in X-ray astronomy are limited by the relatively small number of objects in uniform optically identified and observed samples, especially when rare subclasses are considered or when subsets are isolated to search for evolution or correlations between wavebands. We describe the initial results of a new program aimed to ultimately yield similar to10(4) fully characterized X-ray source identifications-a sample about an order of magnitude larger than earlier efforts. The technique is detailed and employs X-ray data from the ROSAT All-Sky Survey (RASS) and optical imaging and spectroscopic follow-up from the Sloan Digital Sky Survey (SDSS); these two surveys prove to be serendipitously very well matched in sensitivity. As part of the SDSS software pipelines, optical objects in the SDSS photometric catalogs are automatically positionally cross-correlated with RASS X-ray sources. Then priorities for follow-on SDSS optical spectra of candidate counterparts are automatically assigned using an algorithm based on the known ratios of f(x)/f(opt) for various classes of X-ray emitters at typical RASS fluxes of similar to10(-13) ergs cm(-2) s(-1). SDSS photometric parameters for optical morphology, magnitude, and colors, plus FIRST radio information, serve as proxies for object class. Initial application of this approach to RASS/SDSS data from 1400 deg(2) of sky provides a catalog of more than 1200 spectroscopically confirmed quasars and other AGNs that are probable RASS identifications. Most of these are new identifications, and only a few percent of the AGN counterparts are likely to be random superpositions. The magnitude and redshift ranges of the counterparts are very broad, extending over 15
- ItemPhotometric redshifts of quasars(2001) Richards, GT; Weinstein, MA; Schneider, DP; Fan, XH; Strauss, MA; Vanden Berk, DE; Annis, J; Burles, S; Laubacher, EM; York, DG; Frieman, JA; Johnston, D; Scranton, R; Gunn, JE; Nichol, RC; Ivezic, Z; Nichol, RC; Budavári, T; Csabai, I; Szalay, AS; Connolly, AJ; Szokoly, GP; Bahcall, NA; Benítez, N; Brinkmann, J; Brunner, R; Fukugita, M; Hall, PB; Hennessy, GS; Knapp, GR; Kunszt, PZ; Lamb, DQ; Munn, JA; Newberg, HJ; Stoughton, CWe demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter system and the quality of the SDSS imaging data are sufficient for determining accurate and precise photometric redshifts of quasars. Using a sample of 2625 quasars, we show that "photo-z" determination is even possible for z less than or equal to2.2 despite the lack of a strong continuum break, which robust photo-z techniques normally require. We find that, using our empirical method on our sample of objects known to be quasars, approximately 70% of the photometric redshifts are correct to within Deltaz = 0.2; the fraction of correct photometric redshifts is even better for z >3. The accuracy of quasar photometric redshifts does not appear to be dependent upon magnitude to nearly 21st magnitude in i'. Careful calibration of the color-redshift relation to 21st magnitude may allow for the discovery of similar to 10(6) quasar candidates in addition to the 10(5) quasars that the SDSS will confirm spectroscopically. We discuss the efficient selection of quasar candidates from imaging data for use with the photometric redshift technique and the potential scientific uses of a large sample of quasar candidates with photometric redshifts.
- ItemSloan Digital Sky Survey(2002) Stoughton, C; Lupton, RH; Bernardi, M; Blanton, MR; Burles, S; Castander, FJ; Connolly, AJ; Eisenstein, DJ; Frieman, JA; Hennessy, GS; Hindsley, RB; Ivezic, Z; Kent, S; Kunszt, PZ; Lee, BC; Meiksin, A; Munn, JA; Newberg, HJ; Nichol, RC; Nicinski, T; Pier, JR; Richards, GT; Richmond, MW; Schlegel, DJ; Smith, JA; Strauss, MA; SubbaRao, M; Szalay, AS; Thakar, AR; Tucker, DL; Vanden Berk, DE; Yanny, B; Adelman, JK; Anderson, JE; Anderson, SF; Annis, J; Bahcall, NA; Bakken, JA; Bartelmann, M; Bastian, S; Bauer, A; Berman, E; Böhringer, H; Boroski, WN; Bracker, S; Briegel, C; Briggs, JW; Brinkmann, J; Brunner, R; Carey, L; Carr, MA; Chen, B; Christian, D; Colestock, PL; Crocker, JH; Csabai, IN; Czarapata, PC; Dalcanton, J; Davidsen, AF; Davis, JE; Dehnen, W; Dodelson, S; Doi, M; Dombeck, T; Donahue, M; Ellman, N; Elms, BR; Evans, ML; Eyer, L; Fan, XH; Federwitz, GR; Friedman, S; Fukugita, M; Gal, R; Gillespie, B; Glazebrook, K; Gray, J; Grebel, EK; Greenawalt, B; Greene, G; Gunn, JE; de Haas, E; Haiman, Z; Haldeman, M; Hall, PB; Hamabe, M; Hansen, B; Harris, FH; Harris, H; Harvanek, M; Hawley, SL; Hayes, JJE; Heckman, TM; Helmi, A; Henden, A; Hogan, CJ; Hogg, DW; Holmgren, DJ; Holtzman, J; Huang, CH; Hull, C; Ichikawa, SI; Ichikawa, T; Johnston, DE; Kauffmann, G; Kim, RSJ; Kimball, T; Kinney, E; Klaene, M; Kleinman, SJ; Klypin, A; Knapp, GR; Korienek, J; Krolik, J; Kron, RG; Krzesinski, J; Lamb, DQ; Leger, RF; Limmongkol, S; Lindenmeyer, C; Long, DC; Loomis, C; Loveday, J; MacKinnon, B; Mannery, EJ; Mantsch, PM; Margon, B; McG'hee, P; Mckay, TA; McLean, B; Menou, K; Merelli, A; Mo, HJ; Monet, DG; Nakamura, O; Narayanan, VK; Nash, T; Neilsen, EH; Newman, PR; Nitta, A; Odenkirchen, M; Okada, N; Okamura, S; Ostriker, JP; Owen, R; Pauls, AG; Peoples, J; Peterson, RS; Petravick, D; Pope, A; Pordes, R; Postman, M; Prosapio, A; Quinn, TR; Rechenmacher, R; Rivetta, CH; Rix, HW; Rockosi, CM; Rosner, R; Ruthmansdorfer, K; Sandford, D; Schneider, DP; Scranton, R; Sekiguchi, M; Sergey, G; Sheth, R; Shimasaku, K; Smee, S; Snedden, SA; Stebbins, A; Stubbs, C; Szapudi, I; Szkody, P; Szokoly, GP; Tabachnik, S; Tsvetanov, Z; Uomoto, A; Vogeley, MS; Voges, W; Waddell, P; Walterbos, R; Wang, SI; Watanabe, M; Weinberg, DH; White, RL; White, SDM; Wilhite, B; Wolfe, D; Yasuda, N; York, DG; Zehavi, I; Zheng, WThe Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey that will eventually cover approximately one-quarter of the celestial sphere and collect spectra of 10 6 galaxies, 100,000 quasars, 30,000 stars, and 30,000 serendipity targets. In 2001 June, the SDSS released to the general astronomical community its early data release, roughly 462 deg(2) of imaging data including almost 14 million detected objects and 54,008 follow-up spectra. The imaging data were collected in drift-scan mode in five bandpasses (u, g, r, i, and z); our 95% completeness limits for stars are 22.0, 22.2, 22.2, 21.3, and 20.5, respectively. The photometric calibration is reproducible to 5%, 3%, 3%, 3%, and 5%, respectively. The spectra are flux- and wavelength-calibrated, with 4096 pixels from 3800 to 9200 Angstrom at R approximate to 1800. We present the means by which these data are distributed to the astronomical community, descriptions of the hardware used to obtain the data, the software used for processing the data, the measured quantities for each observed object, and an overview of the properties of this data set.
- ItemSpectroscopic target selection in the Sloan Digital Sky Survey: The quasar sample(2002) Richards, GT; Fan, XH; Newberg, HJ; Strauss, MA; Berk, DEV; Schneider, DP; Yanny, B; Boucher, A; Burles, S; Frieman, JA; Gunn, JE; Hall, PB; Ivezic, Z; Kent, S; Loveday, J; Lupton, RH; Rockosi, CM; Schlegel, DJ; Stoughton, C; SubbaRao, M; York, DGWe describe the algorithm for selecting quasar candidates for optical spectroscopy in the Sloan Digital Sky Survey. Quasar candidates are selected via their nonstellar colors in ugriz broadband photometry and by matching unresolved sources to the FIRST radio catalogs. The automated algorithm is sensitive to quasars at all redshifts lower than z similar to 5.8. Extended sources are also targeted as low-redshift quasar candidates in order to investigate the evolution of active galactic nuclei (AGNs) at the faint end of the luminosity function. Nearly 95% of previously known quasars are recovered (based on 1540 quasars in 446 deg(2)). The overall completeness, estimated from simulated quasars, is expected to be over 90%, whereas the overall efficiency (quasars/quasar candidates) is better than 65%. The selection algorithm targets ultraviolet excess quasars to i* = 19.1 and higher redshift (z greater than or similar to 3) quasars to i* = 20.2, yielding approximately 18 candidates deg(-2). In addition to selecting normal quasars, the design of the algorithm makes it sensitive to atypical AGNs such as broad absorption line quasars and heavily reddened quasars.
- ItemThe first data release of the Sloan Digital Sky Survey(2003) Abazajian, K; Adelman-McCarthy, JK; Agüeros, MA; Allam, SS; Anderson, SF; Annis, J; Bahcall, NA; Baldry, IK; Bastian, S; Berlind, A; Bernardi, M; Blanton, MR; Blythe, N; Bochanski, JJ; Boroski, WN; Brewington, H; Briggs, JW; Brinkmann, J; Brunner, RJ; Budavári, T; Carey, LN; Carr, MA; Castander, FJ; Chiu, K; Collinge, MJ; Connolly, AJ; Covey, KR; Csabai, I; Dalcanton, JJ; Dodelson, S; Doi, M; Dong, F; Eisenstein, DJ; Evans, ML; Fan, XH; Feldman, PD; Finkbeiner, DP; Friedman, SD; Frieman, JA; Fukugita, M; Gal, RR; Gillespie, B; Glazebrook, K; Gonzalez, CF; Gray, J; Grebel, EK; Grodnicki, L; Gunn, JE; Gurbani, VK; Hall, PB; Hao, L; Harbeck, D; Harris, FH; Harris, HC; Harvanek, M; Hawley, SL; Heckman, TM; Helmboldt, JF; Hendry, JS; Hennessy, GS; Hindsley, RB; Hogg, DW; Holmgren, DJ; Holtzman, JA; Homer, L; Hui, L; Ichikawa, SI; Ichikawa, T; Inkmann, JP; Ivezic, Z; Jester, S; Johnston, DE; Jordan, B; Jordan, WP; Jorgensen, AM; Juric, M; Kauffmann, G; Kent, SM; Kleinman, SJ; Knapp, GR; Kniazev, AY; Kron, RG; Krzesinski, J; Kunszt, PZ; Kuropatkin, N; Lamb, DQ; Lampeitl, H; Laubscher, BE; Lee, BC; Leger, RF; Li, N; Lidz, A; Lin, H; Loh, YS; Long, DC; Loveday, J; Lupton, RH; Malik, T; Margon, B; McGehee, PM; McKay, TA; Meiksin, A; Miknaitis, GA; Moorthy, BK; Munn, JA; Murphy, T; Nakajima, R; Narayanan, VK; Nash, T; Neilsen, EH; Newberg, HJ; Newman, PR; Nichol, RC; Nicinski, T; Nieto-Santisteban, M; Nitta, A; Odenkirchen, M; Okamura, S; Ostriker, JP; Owen, R; Padmanabhan, N; Peoples, J; Pier, JR; Pindor, B; Pope, AC; Quinn, TR; Rafikov, RR; Raymond, SN; Richards, GT; Richmond, MW; Rix, HW; Rockosi, CM; Schaye, J; Schlegel, DJ; Schneider, DP; Schroeder, J; Scranton, R; Sekiguchi, M; Seljak, U; Sergey, G; Sesar, B; Sheldon, E; Shimasaku, K; Siegmund, WA; Silvestri, NM; Sinisgalli, AJ; Sirko, E; Smith, JA; Smolcic, V; Snedden, SA; Stebbins, A; Steinhardt, C; Stinson, G; Stoughton, C; Strateva, IV; Strauss, MA; Subbarao, M; Szalay, AS; Szapudi, I; Szkody, P; Tasca, L; Tegmark, M; Thakar, AR; Tremonti, C; Tucker, DL; Uomoto, A; Vanden Berk, DE; Vandenberg, J; Vogeley, MS; Voges, W; Vogt, NP; Walkowicz, LM; Weinberg, DH; West, AA; White, SDM; Wilhite, BC; Willman, B; Xu, YZ; Yanny, B; Yarger, J; Yasuda, N; Yip, CW; Yocum, DR; York, DG; Zakamska, NL; Zehavi, I; Zheng, W; Zibetti, S; Zucker, DBThe Sloan Digital Sky Survey (SDSS) has validated and made publicly available its First Data Release. This consists of 2099 deg(2) of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 deg(2) of this area, and tables of measured parameters from these data. The imaging data go to a depth of r approximate to 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 mas rms per coordinate, respectively. The spectra cover the range 3800-9200 Angstrom, with a resolution of 1800-2100. This paper describes the characteristics of the data with emphasis on improvements since the release of commissioning data (the SDSS Early Data Release) and serves as a pointer to extensive published and on-line documentation of the survey.
- ItemThe Sloan Digital Sky Survey Quasar Catalog. I. Early data release(2002) Schneider, DP; Richards, GT; Fan, XH; Hall, PB; Strauss, MA; Vanden Berk, DE; Gunn, JE; Newberg, HJ; Reichard, TA; Stoughton, C; Voges, W; Yanny, B; Anderson, SF; Annis, J; Bahcall, NA; Bauer, A; Bernardi, M; Blanton, MR; Boroski, WN; Brinkmann, J; Briggs, JW; Brunner, R; Burles, S; Carey, L; Castander, FJ; Connolly, AJ; Csabai, I; Doi, M; Friedman, S; Frieman, JA; Fukugita, M; Heckman, TM; Hennessy, GS; Hindsley, RB; Hogg, DW; Ivezic, Z; Kent, S; Knapp, GR; Kunzst, PZ; Lamb, DQ; Leger, RF; Long, DC; Loveday, J; Lupton, RH; Margon, B; Meiksin, A; Merelli, A; Munn, JA; Newcomb, M; Nichol, RC; Owen, R; Pier, JR; Pope, A; Rockosi, CM; Saxe, DH; Schlegel, D; Siegmund, WA; Smee, S; Snir, Y; SubbaRao, M; Szalay, AS; Thakar, AR; Uomoto, A; Waddell, P; York, DGWe present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 3814 objects ( 3000 discovered by the SDSS) in the initial SDSS public data release that have at least one emission line with a full width at half-maximum larger than 1000 km s(-1), luminosities brighter than M(i*) = -23, and highly reliable redshifts. The area covered by the catalog is 494 deg(2); the majority of the objects were found in SDSS commissioning data using a multicolor selection technique. The quasar redshifts range from 0.15 to 5.03. For each object the catalog presents positions accurate to better than 0".2 rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.05 mag, radio and X-ray emission properties, and information on the morphology and selection method. Calibrated spectra of all objects in the catalog, covering the wavelength region 3800-9200 Angstrom at a spectral resolution of 1800-2100, are also available. Since the quasars were selected during the commissioning period, a time when the quasar selection algorithm was undergoing frequent revisions, the sample is not homogeneous and is not intended for statistical analysis.
- ItemThe Sloan Digital Sky Survey Quasar Catalog. II. First data release(2003) Schneider, DP; Fan, XH; Hall, PB; Jester, S; Richards, GT; Stoughton, C; Strauss, MA; SubbaRao, M; Vanden Berk, DE; Anderson, SF; Brandt, WN; Gunn, JE; Gray, J; Trump, JR; Voges, W; Yanny, B; Bahcall, NA; Blanton, MR; Boroski, WN; Brinkmann, J; Brunner, R; Burles, S; Castander, FJ; Doi, M; Eisenstein, D; Frieman, JA; Fukugita, M; Heckman, TM; Hennessy, GS; Ivezic, Z; Kent, S; Knapp, GR; Lamb, DQ; Lee, BC; Loveday, J; Lupton, RH; Margon, B; Meiksin, A; Munn, JA; Newberg, HJ; Nichol, RC; Niederste-Ostholt, M; Pier, JR; Richmond, MW; Rockosi, CM; Saxe, DH; Schlegel, DJ; Szalay, AS; Thakar, AR; Uomoto, A; York, DGWe present the second edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 16,713 objects in the SDSS First Data Release that have luminosities larger than M-i=-22 (in a cosmology with H-0=70 km s(-1) Mpc(-1), Omega(M)=0.3, and Omega(Lambda)=0.7), have at least one emission line with FWHM larger than 1000 km s(-1), and have highly reliable redshifts. The area covered by the catalog is approximate to1360 deg(2). The quasar redshifts range from 0.08 to 5.41, with a median value of 1.43. For each object, the catalog presents positions accurate to better than 0."2 rms per coordinate, five- band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains some radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. Calibrated digital spectra of all objects in the catalog, covering the wavelength region 3800-9200 Angstrom at a spectral resolution of 1800-2100, are available. This publication supersedes the first SDSS Quasar Catalog, which was based on material from the SDSS Early Data Release. A summary of corrections to current quasar databases is also provided. The majority of the objects were found in SDSS commissioning data using a multicolor selection technique. Since the quasar selection algorithm was undergoing testing during the entire observational period covered by this catalog, care must be taken when assembling samples from the catalog for use in statistical studies. A total of 15,786 objects (94%) in the catalog were discovered by the SDSS; 12,173 of the SDSS discoveries are reported here for the first time. Included in the new discoveries are five quasars brighter than i=16.0 and 17 quasars with redshifts larger than 4.5.