Browsing by Author "Olivares E, F."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemFirst simultaneous optical/near-infrared imaging of an X-ray selected, high-redshift cluster of galaxies with GROND The galaxy population of XMMU J0338.7+0030 at z=1.1(2012) Pierini, D.; Suhada, R.; Fassbender, R.; Nastasi, A.; Boehringer, H.; Salvato, M.; Pratt, G. W.; Lerchster, M.; Rosati, P.; Santos, J. S.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Muehlegger, M.; Quintana, H.; Schwope, A.; Biffi, V.; Chon, G.; Giodini, S.; Koppenhoefer, J.; Verdugo, M.; Ziparo, F.; Afonso, P. M. J.; Clemens, C.; Greiner, J.; Kruehler, T.; Yoldas, A. Kuepcue; Olivares E, F.; Rossi, A.; Yoldas, A.Context. The XMM-Newton Distant Cluster Project is a serendipitous survey for clusters of galaxies at redshifts z >= 0.8 based on deep archival XMM-Newton observations. X-ray sources identified as extended are screened against existing optical all-sky surveys for galaxies, in case of candidate high-z clusters followed up with imaging at 4 m-class telescopes and, ultimately, multi-object spectroscopy at 8 m-class telescopes. Low-significance candidate high-z clusters are followed up with the seven-channel imager GROND (Gamma-Ray Burst Optical and Near-Infrared Detector) that is mounted at a 2 m-class telescope. Its unique capability of simultaneous imaging in the g', r', i', z', J, H, Ks bands enables the use of the photometric redshift technique.
- ItemFour GRB supernovae at redshifts between 0.4 and 0.8(2019) Klose, S.; Schmidl, S.; Kann, D. A.; Guelbenzu, A. Nicuesa; Schulze, S.; Greiner, J.; Olivares E, F.; Kruehler, T.; Schady, P.; Afonso, P. M. J.; Filgas, R.; Fynbo, J. P. U.; Rau, A.; Rossi, A.; Takats, K.; Tanga, M.; Updike, A. C.; Varela, K.Twenty years ago, GRB 980425/SN 1998bw revealed that long gamma-ray bursts (GRBs) are physically associated with broad-lined type-Ic supernovae (SNe). Since then more than 1000 long GRBs have been localized to high angular precision, but only in similar to 50 cases has the underlying SN component been identified. Using the Gamma-Ray Burst Optical Near-Infrared Detector (GROND) multi-channel imager at ESO/La Silla, during the last ten years we have devoted a substantial amount of observing time to reveal and study SN components in long-GRB afterglows. Here we report on four more GRB SNe (associated with GRBs 071112C, 111228A, 120714B, and 130831A) which were discovered and/or followed-up with GROND and whose redshifts lie between z = 0.4 and 0.8. We study their afterglow light curves, follow the associated SN bumps over several weeks, and characterize their host galaxies. Using SN 1998bw as a template, the derived SN explosion parameters are fully consistent with the corresponding properties of the currently known GRB-SN ensemble, with no evidence for an evolution of their properties as a function of redshift. In two cases (GRB 120714B/SN 2012eb at z = 0.398 and GRB 130831A/SN 2013fu at z = 0.479) additional Very Large Telescope (VLT) spectroscopy of the associated SNe revealed a photospheric expansion velocity at maximum light of about 40 000 and 20 000 km s(-1), respectively. For GRB 120714B, which was an intermediate-luminosity burst, we find additional evidence for a black-body component in the light of the optical transient at early times, similar to what has been detected in some GRB SNe at lower redshifts.
- ItemIdentifying the host galaxy of the short GRB 100628A(EDP SCIENCES S A, 2015) Guelbenzu, A. Nicuesa; Klose, S.; Palazzi, E.; Greiner, J.; Michalowski, M. J.; Kann, D. A.; Hunt, L. K.; Malesani, D.; Rossi, A.; Savaglio, S.; Schulze, S.; Xu, D.; Afonso, P. M. J.; Elliott, J.; Ferrero, P.; Filgas, R.; Hartmann, D. H.; Kruehler, T.; Knust, F.; Masetti, N.; Olivares E, F.; Rau, A.; Schady, P.; Schmidl, S.; Tanga, M.; Updike, A. C.; Varela, K.We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system is the host, then GRB 100628A was the cosmologically most nearby unambiguous short burst with a measured redshift so far. We used the multi-colour imager GROND at the ESO/La Silla MPG 2.2 in telescope. ESO/VLT spectroscopy, and deep Australia Telescope Compact Array (ATCA) radio-continuum observations together with publicly available Gemini imaging data to study the putative host and the galaxies in the field of GRB 100628A. We confirm that inside the X-ray error circle the most probable host-galaxy candidate is the morphologically disturbed, interacting galaxy system at z = 0.102. The interacting galaxies are connected by a several kpc long tidal stream, which our VLT/FORS2 spectroscopy reveals strong emission lines of [O II] [O III], H alpha and H beta, characteristic for the class of extreme emission-line galaxies and indicative of ongoing star formation. The latter leaves open the possibility that the ORB progenitor was a member of a young stellar population. However, we indentify a second host-galaxy candidate slightly outside the X-ray error circle. It is a radio-bright, luminous elliptical galaxy at a redshift z = 0.311. With a K-band luminosity of 2 x 10(11) L-circle dot this galaxy resembles the probable giant elliptical host of the first well-localized short burst. GRB 050509B. If this is the host, then the progenitor of GRB 100628A was a member of an old stellar population.
- ItemSOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*(2022) Tucker, D. L.; Wiesner, M. P.; Allam, S. S.; Soares-Santos, M.; Bom, C. R.; Butner, M.; Garcia, A.; Morgan, R.; Olivares E, F.; Palmese, A.; Santana-Silva, L.; Shrivastava, A.; Annis, J.; Garcia-Bellido, J.; Gill, M. S. S.; Herner, K.; Kilpatrick, C. D.; Makler, M.; Sherman, N.; Amara, A.; Lin, H.; Smith, M.; Swann, E.; Arcavi, I; Bachmann, T. G.; Bechtol, K.; Berlfein, F.; Briceno, C.; Brout, D.; Butler, R. E.; Cartier, R.; Casares, J.; Chen, H-Y; Conselice, C.; Contreras, C.; Cook, E.; Cooke, J.; Dage, K.; D'Andrea, C.; Davis, T. M.; de Carvalho, R.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M.; Farr, B.; Finley, D. A.; Fishbach, M.; Foley, R. J.; Forster-Buron, F.; Fosalba, P.; Friedel, D.; Frieman, J.; Frohmaier, C.; Gruendl, R. A.; Hartley, W. G.; Hiramatsu, D.; Holz, D. E.; Howell, D. A.; Kawash, A.; Kessler, R.; Kuropatkin, N.; Lahav, O.; Lundgren, A.; Lundquist, M.; Malik, U.; Mann, A. W.; Marriner, J.; Marshall, J. L.; Martinez-Vazquez, C. E.; McCully, C.; Menanteau, F.; Meza, N.; Narayan, G.; Neilsen, E.; Nicolaou, C.; Nichol, R.; Paz-Chinchon, F.; Pereira, M. E. S.; Pineda, J.; Points, S.; Quirola-Vasquez, J.; Rembold, S.; Rest, A.; Rodriguez, O.; Romer, A. K.; Sako, M.; Salim, S.; Scolnic, D.; Smith, J. A.; Strader, J.; Sullivan, M.; Swanson, M. E. C.; Thomas, D.; Valenti, S.; Varga, T. N.; Walker, A. R.; Weller, J.; Wood, M. L.; Yanny, B.; Zenteno, A.; Aguena, M.; Andrade-Oliveira, F.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Costanzi, M.; da Costa, L. N.; De Vicente, J.; Desai, S.; Everett, S.; Ferrero, I; Flaugher, B.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Lima, M.; Maia, M. A. G.; Miquel, R.; Ogando, R. L. C.; Pieres, A.; Malagon, A. A. Plazas; Rodriguez-Monroy, M.; Sanchez, E.; Scarpine, V; Schubnell, M.; Serrano, S.; Sevilla-Noarbe, I; Suchyta, E.; Tarle, G.; To, C.; Zhang, Y.On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star-black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope's Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond.