Browsing by Author "Palma, Alvaro T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAntarctic shallow suhtidal echinoderms: is the ecological success of broadcasters related to ice disturbance?(SPRINGER, 2007) Palma, Alvaro T.; Poulin, Elie; Silva, Marcelo G.; San Martin, Roberto B.; Munoz, Carlos A.; Diaz, Angie D.One characteristic pattern found in the marine Antarctic shallow environments is the unusually high proportion of species with protected and pelagic lecitotrophic development modes. However, species with planktotrophic development generally appear as the most conspicuous types of organisms in these environments. The Antarctic shallow benthos is considered as one of the most disturbed in the world, mainly due to the action of ice, thus one could hypothesize that such an environment should favor organisms with high dispersal capability. In order to test this general hypothesis, for two consecutive summers (2004-2005) and at two locations, we quantified the abundance and size distribution of most echinoderms present along bathymetric transects. Our results show the predominance of broadcasters (i.e., Sterechinus neumayeri and Odontaster validus) at a location where disturbances are common, while brooders (e.g., Abatus agassizii) only occurred at shallower depths of the least disturbed location. These results not only corroborate the hypothesis that local disturbance is an important factor generating these ecological patterns, but also suggest how ice-related disturbances could represent a major selecting agent behind the patterns of species diversity at an evolutionary scale in Antarctica.
- ItemNear-shore distribution of phyllosomas of the two only lobster species (Decapoda: Achelata) present in Robinson Crusoe Island and endemic to the Juan Fernandez archipelago(SOC BIOLGIA CHILE, 2011) Palma, Alvaro T.; Caceres Montenegro, Ismael; Bennett, Richard S.; Magnolfi, Spartaco; Henriquez, Luis A.; Guerra, Jorge F.; Manriquez, Karen; Palma, R. EduardoTwo lobster species coexist in the southeast Pacific Juan Fernandez archipelago, Jasus frontalis (Milne-Edwards, 1837) and Acantharctus delfini (Bouvier, 1909). Like most lobster species they undergo a prolonged larval period, which is particularly long for J. frontalis (> 16 months). Though typical of Palinurids, this long larval duration is usually not thought to be conducive to local recruitment. While it is known that settlement is confined to the three islands of the archipelago (Robinson Crusoe, Alejandro Selkirk and Santa Clara) and Desventuradas Islands (aprox. 800 km to the north), it remains poorly understood how local larval supply allows such distribution pattern. The goal of this study is twofold. Firstly, we aimed to characterize the distribution and abundance of the larvae of these two species around Robinson Crusoe Island using plankton tows and systematic hydrographic records between October 2008 to March of 2011, thus providing the first systematic and prolonged coupled biophysical observations in the nearshore of the archipelago. We hypothesize that spatial and temporal larval distribution patterns are associated to their retention around the archipelago, thus contributing to our knowledge of the physical and biological processes maintaining their extreme isolation. Secondly, using molecular genetics, we confirm a simple taxonomic criteria to distinguish the larvae of the two species, thus aiding future studies of larval dynamics. Throughout phyllosomas of A. delfini were more abundant than that of J. frontalis. Both species were more abundant on the northern shores of Robinson Crusoe Island and generally associated with warmer and saltier waters and mostly present in the samples collected during spring and summer months. Phyllosomas of both species were more abundant during night-time tows in the upper layer of the water column surveyed suggesting a diurnal vertical migration behavior which, for coastal dwelling meroplanktonic species, can be related to a nearshore larval retention mechanism. These preliminary results represent a pioneering effort to understand the mechanisms driving the endemism and extreme isolation of the two study species.