Browsing by Author "Perdikaris, Paris"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCOVID-19 dynamics across the US: A deep learning study of human mobility and social behavior(2021) Bhouri, Mohamed Aziz; Costabal, Francisco Sahli; Wang, Hanwen; Linka, Kevin; Peirlinck, Mathias; Kuhl, Ellen; Perdikaris, ParisThis paper presents a deep learning framework for epidemiology system identification from noisy and sparse observations with quantified uncertainty. The proposed approach employs an ensemble of deep neural networks to infer the time-dependent reproduction number of an infectious disease by formulating a tensor-based multi-step loss function that allows us to efficiently calibrate the model on multiple observed trajectories. The method is applied to a mobility and social behavior-based SEIR model of COVID-19 spread. The model is trained on Google and Unacast mobility data spanning a period of 66 days, and is able to yield accurate future forecasts of COVID-19 spread in 203 US counties within a time-window of 15 days. Interestingly, a sensitivity analysis that assesses the importance of different mobility and social behavior parameters reveals that attendance of close places, including workplaces, residential, and retail and recreational locations, has the largest impact on the effective reproduction number. The model enables us to rapidly probe and quantify the effects of government interventions, such as lock-down and re-opening strategies. Taken together, the proposed framework provides a robust workflow for data-driven epidemiology model discovery under uncertainty and produces probabilistic forecasts for the evolution of a pandemic that can judiciously provide information for policy and decision making. All codes and data accompanying this manuscript are available at https://github.com/PredictiveIntelligenceLab/DeepCOVID19. (C) 2021 Elsevier B.V. All rights reserved.
- ItemFast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification(2022) Gander, Lia; Pezzuto, Simone; Gharaviri, Ali; Krause, Rolf; Perdikaris, Paris; Sahli Costabal, FranciscoComputational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whether arrhythmias can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian process classification on Riemannian manifolds to efficiently determine the regions in the atria where arrhythmias are inducible. We build a probabilistic classifier that operates directly on the atrial surface. We take advantage of lower resolution models to explore the atrial surface and combine seamlessly with high-resolution models to identify regions of inducibility. We test our methodology in 9 different cases, with different levels of fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier that combines low and high resolution models, shows a balanced accuracy that is, on average, 5.7% higher than a nearest neighbor classifier. We hope that this new technique will allow faster and more precise clinical applications of computational models for atrial fibrillation. All data and code accompanying this manuscript will be made publicly available at: https://github.com/fsahli/AtrialMFclass.
- ItemPhysics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps(2022) Ruiz Herrera, Carlos; Grandits, Thomas; Plank, Gernot; Perdikaris, Paris; Sahli Costabal, Francisco; Pezzuto, SimoneWe propose FiberNet, a method to estimate in-vivo the cardiac fiber architecture of the human atria from multiple catheter recordings of the electrical activation. Cardiac fibers play a central role in the electro-mechanical function of the heart, yet they are difficult to determine in-vivo, and hence rarely truly patient-specific in existing cardiac models. FiberNet learns the fiber arrangement by solving an inverse problem with physics-informed neural networks. The inverse problem amounts to identifying the conduction velocity tensor of a cardiac propagation model from a set of sparse activation maps. The use of multiple maps enables the simultaneous identification of all the components of the conduction velocity tensor, including the local fiber angle. We extensively test FiberNet on synthetic 2-D and 3-D examples, diffusion tensor fibers, and a patient-specific case. We show that 3 maps are sufficient to accurately capture the fibers, also in the presence of noise. With fewer maps, the role of regularization becomes prominent. Moreover, we show that the fitted model can robustly reproduce unseen activation maps. We envision that FiberNet will help the creation of patient-specific models for personalized medicine. The full code is available at http://github.com/fsahli/FiberNet.
- ItemΔ-PINNs: Physics-informed neural networks on complex geometries(2024) Sahli Costabal, Francisco; Pezzuto, Simone; Perdikaris, ParisPhysics-informed neural networks (PINNs) have demonstrated promise in solving forward and inverse problems involving partial differential equations. Despite recent progress on expanding the class of problems that can be tackled by PINNs, most of existing use-cases involve simple geometric domains. To date, there is no clear way to inform PINNs about the topology of the domain where the problem is being solved. In this work, we propose a novel positional encoding mechanism for PINNs based on the eigenfunctions of the Laplace–Beltrami operator. This technique allows to create an input space for the neural network that represents the geometry of a given object. We approximate the eigenfunctions as well as the operators involved in the partial differential equations with finite elements. We extensively test and compare the proposed methodology against different types of PINNs in complex shapes, such as a coil, a heat sink and the Stanford bunny, with different physics, such as the Eikonal equation and heat transfer. We also study the sensitivity of our method to the number of eigenfunctions used, as well as the discretization used for the eigenfunctions and the underlying operators. Our results show excellent agreement with the ground truth data in cases where traditional PINNs fail to produce a meaningful solution. We envision this new technique will expand the effectiveness of PINNs to more realistic applications. Code available at: https://github.com/fsahli/Delta-PINNs.