Browsing by Author "Perez, Laura M."
Now showing 1 - 18 of 18
Results Per Page
Sort Options
- ItemA Dust-trapping Ring in the Planet-hosting Disk of Elias 2-24(2024) Carvalho, Adolfo S.; Perez, Laura M.; Sierra, Anibal; Mellado, Maria Jesus; Hillenbrand, Lynne A.; Andrews, Sean; Benisty, Myriam; Birnstiel, Tilman; Carpenter, John M.; Guzman, Viviana V.; Huang, Jane; Isella, Andrea; Kurtovic, Nicolas; Ricci, Luca; Wilner, David J.Rings and gaps are among the most widely observed forms of substructure in protoplanetary disks. A gap-ring pair may be formed when a planet carves a gap in the disk, which produces a local pressure maximum following the gap that traps inwardly drifting dust grains and appears as a bright ring owing to the enhanced dust density. A dust-trapping ring would provide a promising environment for solid growth and possibly planetesimal production via the streaming instability. We present evidence of dust trapping in the bright ring of the planet-hosting disk Elias 2-24, from the analysis of 1.3 and 3 mm Atacama Large Millimeter/submillimeter Array observations at high spatial resolution (0.'' 029, 4.0 au). We leverage the high spatial resolution to demonstrate that larger grains are more efficiently trapped and place constraints on the local turbulence (8 x 10(-4) < alpha( turb) < 0.03) and the gas-to-dust ratio (Sigma (g) /Sigma (d) < 30) in the ring. Using a scattering-included marginal probability analysis, we measure a total dust disk mass of M-dust=13.8(-0.5)+0.7x10(-4)M(circle dot) . We also show that at the orbital radius of the proposed perturber the gap is cleared of material down to a flux contrast of 10(-3) of the peak flux in the disk.
- ItemCO Line Emission Surfaces and Vertical Structure in Midinclination Protoplanetary Disks(2022) Law, Charles J.; Crystian, Sage; Teague, Richard; Oberg, Karin, I; Rich, Evan A.; Andrews, Sean M.; Bae, Jaehan; Flaherty, Kevin; Guzman, Viviana V.; Huang, Jane; Ilee, John D.; Kastner, Joel H.; Loomis, Ryan A.; Long, Feng; Perez, Laura M.; Perez, Sebastian; Qi, Chunhua; Rosotti, Giovanni P.; Ruiz-Rodriguez, Dary; Tsukagoshi, Takashi; Wilner, David J.High spatial resolution CO observations of midinclination (approximate to 30 degrees-75 degrees) protoplanetary disks offer an opportunity to study the vertical distribution of CO emission and temperature. The asymmetry of line emission relative to the disk major axis allows for a direct mapping of the emission height above the midplane, and for optically thick, spatially resolved emission in LTE, the intensity is a measure of the local gas temperature. Our analysis of Atacama Large Millimeter/submillimeter Array archival data yields CO emission surfaces, dynamically constrained stellar host masses, and disk atmosphere gas temperatures for the disks around the following: HD 142666, MY Lup, V4046 Sgr, HD 100546, GW Lup, WaOph 6, DoAr 25, Sz 91, CI Tau, and DM Tau. These sources span a wide range in stellar masses (0.50-2.10 M (circle dot)), ages (similar to 0.3-23 Myr), and CO gas radial emission extents (approximate to 200-1000 au). This sample nearly triples the number of disks with mapped emission surfaces and confirms the wide diversity in line emitting heights (z/r approximate to 0.1 to greater than or similar to 0.5) hinted at in previous studies. We compute the radial and vertical CO gas temperature distributions for each disk. A few disks show local temperature dips or enhancements, some of which correspond to dust substructures or the proposed locations of embedded planets. Several emission surfaces also show vertical substructures, which all align with rings and gaps in the millimeter dust. Combining our sample with literature sources, we find that CO line emitting heights weakly decline with stellar mass and gas temperature, which, despite large scatter, is consistent with simple scaling relations. We also observe a correlation between CO emission height and disk size, which is due to the flared structure of disks. Overall, CO emission surfaces trace approximate to 2-5x gas pressure scale heights (H-g) and could potentially be calibrated as empirical tracers of H-g.
- ItemConstraints on the Physical Origin of Large Cavities in Transition Disks from Multiwavelength Dust Continuum Emission(2024) Sierra, Anibal; Perez, Laura M.; Sotomayor, Benjamin; Benisty, Myriam; Chandler, Claire J.; Andrews, Sean; Carpenter, John; Henning, Thomas; Testi, Leonardo; Ricci, Luca; Wilner, DavidThe physical origin of the large cavities observed in transition disks is to date still unclear. Different physical mechanisms (e.g., a companion, dead zones, enhanced grain growth) produce disk cavities of different depth, and the expected spatial distribution of gas and solids in each mechanism is not the same. In this work, we analyze the multiwavelength interferometric visibilities of dust continuum observations obtained with Atacama Large Millimeter/submillimeter Array and Very Large Array for six transition disks: CQTau, UXTau A, LkCa15, RXJ1615, SR24S, and DMTau, and calculate brightness radial profiles, where diverse emission morphology is revealed at different wavelengths. The multiwavelength data are used to model the spectral energy distribution and compute constraints on the radial profile of the dust surface density, maximum grain size, and dust temperature in each disk. They are compared with the observational signatures expected from various physical mechanisms responsible for disk cavities. The observational signatures suggest that the cavities observed in the disks around UXTau A, LkCa15, and RXJ1615 could potentially originate from a dust trap created by a companion. Conversely, in the disks around CQTau, SR24S, DMTau, the origin of the cavity remains unclear, although it is compatible with a pressure bump and grain growth within the cavity.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlights(2021) Oberg, Karin, I; Guzman, Viviana V.; Walsh, Catherine; Aikawa, Yuri; Bergin, Edwin A.; Law, Charles J.; Loomis, Ryan A.; Alarcon, Felipe; Andrews, Sean M.; Bae, Jaehan; Bergner, Jennifer B.; Boehler, Yann; Booth, Alice S.; Bosman, Arthur D.; Calahan, Jenny K.; Cataldi, Gianni; Cleeves, L. Ilsedore; Czekala, Ian; Furuya, Kenji; Huang, Jane; Ilee, John D.; Kurtovic, Nicolas T.; Le Gal, Romane; Liu, Yao; Long, Feng; Menard, Francois; Nomura, Hideko; Perez, Laura M.; Qi, Chunhua; Schwarz, Kamber R.; Sierra, Anibal; Teague, Richard; Tsukagoshi, Takashi; Yamato, Yoshihide; van't Hoff, Merel L. R.; Waggoner, Abygail R.; Wilner, David J.; Zhang, KePlanets form and obtain their compositions in dust- and gas-rich disks around young stars, and the outcome of this process is intimately linked to the disk chemical properties. The distributions of molecules across disks regulate the elemental compositions of planets, including C/N/O/S ratios and metallicity (O/H and C/H), as well as access to water and prebiotically relevant organics. Emission from molecules also encodes information on disk ionization levels, temperature structures, kinematics, and gas surface densities, which are all key ingredients of disk evolution and planet formation models. The Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program was designed to expand our understanding of the chemistry of planet formation by exploring disk chemical structures down to 10 au scales. The MAPS program focuses on five disks-around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480-in which dust substructures are detected and planet formation appears to be ongoing. We observed these disks in four spectral setups, which together cover similar to 50 lines from over 20 different species. This paper introduces the Astrophysical Journal Supplement's MAPS Special Issue by presenting an overview of the program motivation, disk sample, observational details, and calibration strategy. We also highlight key results, including discoveries of links between dust, gas, and chemical substructures, large reservoirs of nitriles and other organics in the inner disk regions, and elevated C/O ratios across most disks. We discuss how this collection of results is reshaping our view of the chemistry of planet formation.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN Strategies for Synthesizing Images of Molecular Line Emission in Protoplanetary Disks(2021) Czekala, Ian; Loomis, Ryan A.; Teague, Richard; Booth, Alice S.; Huang, Jane; Cataldi, Gianni; Ilee, John D.; Law, Charles J.; Walsh, Catherine; Bosman, Arthur D.; Guzman, Viviana V.; Gal, Romane Le; Oberg, Karin I.; Yamato, Yoshihide; Aikawa, Yuri; Andrews, Sean M.; Bae, Jaehan; Bergin, Edwin A.; Bergner, Jennifer B.; Cleeves, L. Ilsedore; Kurtovic, Nicolas T.; Menard, Francois; Nomura, Hideko; Perez, Laura M.; Qi, Chunhua; Schwarz, Kamber R.; Tsukagoshi, Takashi; Waggoner, Abygail R.; Wilner, David J.; Zhang, KeThe Molecules with ALMA at Planet-forming Scales Large Program (MAPS LP) surveyed the chemical structures of five protoplanetary disks across more than 40 different spectral lines at high angular resolution (0.'' 15 and 0.'' 30 beams for Bands 6 and 3, respectively) and sensitivity (spanning 0.3-1.3 mJy beam(-1) and 0.4-1.9 mJy beam(-1) for Bands 6 and 3, respectively). In this article, we describe the multistage workflow-built around the CASA tclean image deconvolution procedure-that we used to generate the core data product of the MAPS LP: the position-position-velocity image cubes for each spectral line. Owing to the expansive nature of the survey, we encountered a range of imaging challenges: some are familiar to the submillimeter protoplanetary disk community, like the need to use an accurate CLEAN mask, and others are less well known, like the incorrect default flux scaling of the CLEAN residual map first described by Jorsater & van Moorsel (the "JvM effect"). We distill lessons learned into recommended workflows for synthesizing image cubes of molecular emission. In particular, we describe how to produce image cubes with accurate fluxes via "JvM correction," a procedure that is generally applicable to any image synthesized via CLEAN deconvolution but is especially critical for low signal-to-noise ratio (S/N) emission. We further explain how we used visibility tapering to promote a common, fiducial beam size and contextualize the interpretation of S/N when detecting molecular emission from protoplanetary disks. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). IV. Emission Surfaces and Vertical Distribution of Molecules(2021) Law, Charles J.; Teague, Richard; Loomis, Ryan A.; Bae, Jaehan; Oberg, Karin, I; Czekala, Ian; Andrews, Sean M.; Aikawa, Yuri; Alarcon, Felipe; Bergin, Edwin A.; Bergner, Jennifer B.; Booth, Alice S.; Bosman, Arthur D.; Calahan, Jenny K.; Cataldi, Gianni; Cleeves, L. Ilsedore; Furuya, Kenji; Guzman, Viviana V.; Huang, Jane; Ilee, John D.; Le Gal, Romane; Liu, Yao; Long, Feng; Menard, Francois; Nomura, Hideko; Perez, Laura M.; Qi, Chunhua; Schwarz, Kamber R.; Soto, Daniela; Tsukagoshi, Takashi; Yamato, Yoshihide; 't Hoff, Merel L. R. van; Walsh, Catherine; Wilner, David J.; Zhang, KeThe Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a unique opportunity to study the vertical distribution of gas, chemistry, and temperature in the protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. By using the asymmetry of molecular line emission relative to the disk major axis, we infer the emission height (z) above the midplane as a function of radius (r). Using this method, we measure emitting surfaces for a suite of CO isotopologues, HCN, and C2H. We find that (CO)-C-12 emission traces the most elevated regions with z/r> 0.3
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). V. CO Gas Distributions(2021) Zhang, Ke; Booth, Alice S.; Law, Charles J.; Bosman, Arthur D.; Schwarz, Kamber R.; Bergin, Edwin A.; Oberg, Karin, I; Andrews, Sean M.; Guzman, Viviana V.; Walsh, Catherine; Qi, Chunhua; van 't Hoff, Merel L. R.; Long, Feng; Wilner, David J.; Huang, Jane; Czekala, Ian; Ilee, John D.; Cataldi, Gianni; Bergner, Jennifer B.; Aikawa, Yuri; Teague, Richard; Bae, Jaehan; Loomis, Ryan A.; Calahan, Jenny K.; Alarcon, Felipe; Menard, Francois; Le Gal, Romane; Sierra, Anibal; Yamato, Yoshihide; Nomura, Hideko; Tsukagoshi, Takashi; Perez, Laura M.; Trapman, Leon; Liu, Yao; Furuya, KenjiHere we present high-resolution (15-24 au) observations of CO isotopologue lines from the Molecules with ALMA on Planet-forming Scales (MAPS) ALMA Large Program. Our analysis employs observations of the (J = 2-1) and (1-0) lines of (CO)-C-13 and (CO)-O-18 and the (J = 1-0) line of (CO)-O-17 for five protoplanetary disks. We retrieve CO gas density distributions, using three independent methods: (1) a thermochemical modeling framework based on the CO data, the broadband spectral energy distribution, and the millimeter continuum emission; (2) an empirical temperature distribution based on optically thick CO lines; and (3) a direct fit to the (CO)-O-17 hyperfine lines. Results from these methods generally show excellent agreement. The CO gas column density profiles of the five disks show significant variations in the absolute value and the radial shape. Assuming a gas-to-dust mass ratio of 100, all five disks have a global CO-to-H-2 abundance 10-100 times lower than the interstellar medium ratio. The CO gas distributions between 150 and 400 au match well with models of viscous disks, supporting the long-standing theory. CO gas gaps appear to be correlated with continuum gap locations, but some deep continuum gaps do not have corresponding CO gaps. The relative depths of CO and dust gaps are generally consistent with predictions of planet-disk interactions, but some CO gaps are 5-10 times shallower than predictions based on dust gaps. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). VI. Distribution of the Small Organics HCN, C2H, and H2CO(2021) Guzman, Viviana V.; Bergner, Jennifer B.; Law, Charles J.; Oberg, Karin I.; Walsh, Catherine; Cataldi, Gianni; Aikawa, Yuri; Bergin, Edwin A.; Czekala, Ian; Huang, Jane; Andrews, Sean M.; Loomis, Ryan A.; Zhang, Ke; Le Gal, Romane; Alarcon, Felipe; Ilee, John D.; Teague, Richard; Cleeves, L. Ilsedore; Wilner, David J.; Long, Feng; Schwarz, Kamber R.; Bosman, Arthur D.; Perez, Laura M.; Menard, Francois; Liu, YaoSmall organic molecules, such as C2H, HCN, and H2CO, are tracers of the C, N, and O budget in protoplanetary disks. We present high-angular-resolution (10-50 au) observations of C2H, HCN, and H2CO lines in five protoplanetary disks from the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program. We derive column density and excitation temperature profiles for HCN and C2H, and find that the HCN emission arises in a temperate (20-30 K) layer in the disk, while C2H is present in relatively warmer (20-60 K) layers. In the case of HD 163296, we find a decrease in column density for HCN and C2H inside one of the dust gaps near similar to 83 au, where a planet has been proposed to be located. We derive H2CO column density profiles assuming temperatures between 20 and 50 K, and find slightly higher column densities in the colder disks around T Tauri stars than around Herbig Ae stars. The H2CO column densities rise near the location of the CO snowline and/or millimeter dust edge, suggesting an efficient release of H2CO ices in the outer disk. Finally, we find that the inner 50 au of these disks are rich in organic species, with abundances relative to water that are similar to cometary values. Comets could therefore deliver water and key organics to future planets in these disks, similar to what might have happened here on Earth. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission(2021) Sierra, Anibal; Perez, Laura M.; Zhang, Ke; Law, Charles J.; Guzman, Viviana V.; Qi, Chunhua; Bosman, Arthur D.; Oberg, Karin, I; Andrews, Sean M.; Long, Feng; Teague, Richard; Booth, Alice S.; Walsh, Catherine; Wilner, David J.; Menard, Francois; Cataldi, Gianni; Czekala, Ian; Bae, Jaehan; Huang, Jane; Bergner, Jennifer B.; Ilee, John D.; Benisty, Myriam; Le Gal, Romane; Loomis, Ryan A.; Tsukagoshi, Takashi; Liu, Yao; Yamato, Yoshihide; Aikawa, YuriConstraining dust properties of planet-forming disks via high-angular-resolution observations is fundamental to understanding how solids are trapped in substructures and how dust growth may be favored or accelerated therein. We use ALMA dust continuum observations of the Molecules with ALMA at Planet-forming Scales (MAPS) disks and explore a large parameter space to constrain the radial distribution of solid mass and maximum grain size in each disk, including or excluding dust scattering. In the nonscattering model, the dust surface density and maximum grain size profiles decrease from the inner disks to the outer disks, with local maxima at the bright ring locations, as expected from dust trapping models. The inferred maximum grain sizes from the inner to outer disks decrease from 1 cm to 1 mm. For IM Lup, HD 163296, and MWC 480 in the scattering model, two solutions are compatible with their observed inner disk emission: one solution corresponding to a maximum grain size of a few millimeters (similar to the nonscattering model), and the other corresponding to a size of a few hundred micrometers. Based on the estimated Toomre parameter, only IM Lup-which shows a prominent spiral morphology in millimeter dust-is found to be gravitationally unstable. The estimated maximum Stokes number in all the disks lies between 0.01 and 0.3, and the estimated turbulence parameters in the rings of AS 209 and HD 163296 are close to the threshold where dust growth is limited by turbulent fragmentation. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing Protoplanetary Disk Structure within 20 au(2021) Bosman, Arthur D.; Bergin, Edwin A.; Loomis, Ryan A.; Andrews, Sean M.; Van't Hoff, Merel L. R.; Teague, Richard; Oberg, Karin, I; Guzman, Viviana V.; Walsh, Catherine; Aikawa, Yuri; Alarcon, Felipe; Bae, Jaehan; Bergner, Jennifer B.; Booth, Alice S.; Cataldi, Gianni; Cleeves, L. Ilsedore; Czekala, Ian; Huang, Jane; Ilee, John D.; Law, Charles J.; Le Gal, Romane; Liu, Yao; Long, Feng; Menard, Francois; Nomura, Hideko; Perez, Laura M.; Qi, Chunhua; Schwarz, Kamber R.; Sierra, Anibal; Tsukagoshi, Takashi; Yamato, Yoshihide; Wilner, David J.; Zhang, KeConstraining the distribution of gas and dust in the inner 20 au of protoplanetary disks is difficult. At the same time, this region is thought to be responsible for most planet formation, especially around the water ice line at 3-10 au. Under the assumption that the gas is in a Keplerian disk, we use the exquisite sensitivity of the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA large program to construct radial surface brightness profiles with a similar to 3 au effective resolution for the CO isotopologue J = 2-1 lines using the line velocity profile. IM Lup reveals a central depression in (CO)-C-13 and (CO)-O-18 that is ascribed to a pileup of similar to 500 M (circle plus) of dust in the inner 20 au, leading to a gas-to-dust ratio of around <10. This pileup is consistent with an efficient drift of grains (greater than or similar to 100 M (circle plus) Myr(-1)) and a local gas-to-dust ratio that suggests that the streaming instability could be active. The CO isotopologue emission in the GM Aur disk is consistent with a small (similar to 15 au), strongly depleted gas cavity within the similar to 40 au dust cavity. The radial surface brightness profiles for both the AS 209 and HD 163296 disks show a local minimum and maximum in the (CO)-O-18 emission at the location of a known dust ring (similar to 14 au) and gap (similar to 10 au), respectively. This indicates that the dust ring has a low gas-to-dust ratio (>10) and that the dust gap is gas-rich enough to have optically thick (CO)-O-18. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS). XVIII. Kinematic Substructures in the Disks of HD 163296 and MWC 480(2021) Teague, Richard; Bae, Jaehan; Aikawa, Yuri; Andrews, Sean M.; Bergin, Edwin A.; Bergner, Jennifer B.; Boehler, Yann; Booth, Alice S.; Bosman, Arthur D.; Cataldi, Gianni; Czekala, Ian; Guzman, Viviana V.; Huang, Jane; Ilee, John D.; Law, Charles J.; Le Gal, Romane; Long, Feng; Loomis, Ryan A.; Menard, Francois; Oberg, Karin, I; Perez, Laura M.; Schwarz, Kamber R.; Sierra, Anibal; Walsh, Catherine; Wilner, David J.; Yamato, Yoshihide; Zhang, KeWe explore the dynamical structure of the protoplanetary disks surrounding HD 163296 and MWC 480 as part of the Molecules with ALMA at Planet-forming Scales (MAPS) large program. Using the J = 2-1 transitions of (CO)-C-12, (CO)-C-13, and (CO)-O-18 imaged at spatial resolutions of similar to 0.'' 15 and with a channel spacing of 200 m s(-1), we find perturbations from Keplerian rotation in the projected velocity fields of both disks (less than or similar to 5% of the local Keplerian velocity), suggestive of large-scale (tens of astronomical units in size), coherent flows. By accounting for the azimuthal dependence on the projection of the velocity field, the velocity fields were decomposed into azimuthally averaged orthogonal components, v ( phi ), v ( r ), and v ( z ). Using the optically thick (CO)-C-12 emission as a probe of the gas temperature, local variations of approximate to 3 K (approximate to 5% relative changes) were observed and found to be associated with the kinematic substructures. The MWC 480 disk hosts a suite of tightly wound spiral arms. The spirals arms, in conjunction with the highly localized perturbations in the gas velocity structure (kinematic planetary signatures), indicate a giant planet, similar to 1 M (Jup), at a radius of approximate to 245 au. In the disk of HD 163296, the kinematic substructures were consistent with previous studies of Pinte et al. and Teague et al. advocating for multiple similar to 1 M (Jup) planets embedded in the disk. These results demonstrate that molecular line observations that characterize the dynamical structure of disks can be used to search for the signatures of embedded planets. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
- ItemMolecules with ALMA at Planet-forming Scales (MAPS): A Circumplanetary Disk Candidate in Molecular-line Emission in the AS 209 Disk(2022) Bae, Jaehan; Teague, Richard; Andrews, Sean M.; Benisty, Myriam; Facchini, Stefano; Galloway-Sprietsma, Maria; Loomis, Ryan A.; Aikawa, Yuri; Alarcon, Felipe; Bergin, Edwin; Bergner, Jennifer B.; Booth, Alice S.; Cataldi, Gianni; Cleeves, L. Ilsedore; Czekala, Ian; Guzman, Viviana V.; Huang, Jane; Ilee, John D.; Kurtovic, Nicolas T.; Law, Charles J.; Le Gal, Romane; Liu, Yao; Long, Feng; Menard, Francois; Oberg, Karin, I; Perez, Laura M.; Qi, Chunhua; Schwarz, Kamber R.; Sierra, Anibal; Walsh, Catherine; Wilner, David J.; Zhang, KeWe report the discovery of a circumplanetary disk (CPD) candidate embedded in the circumstellar disk of the T Tauri star AS 209 at a radial distance of about 200 au (on-sky separation of 1.'' 4 from the star at a position angle of 161 degrees), isolated via (CO)-C-13 J = 2-1 emission. This is the first instance of CPD detection via gaseous emission capable of tracing the overall CPD mass. The CPD is spatially unresolved with a 117 x 82 mas beam and manifests as a point source in (CO)-C-13, indicating that its diameter is less than or similar to 14 au. The CPD is embedded within an annular gap in the circumstellar disk previously identified using (CO)-C-12 and near-infrared scattered-light observations and is associated with localized velocity perturbations in (CO)-C-12. The coincidence of these features suggests that they have a common origin: an embedded giant planet. We use the (CO)-C-13 intensity to constrain the CPD gas temperature and mass. We find that the CPD temperature is greater than or similar to 35 K, higher than the circumstellar disk temperature at the radial location of the CPD, 22 K, suggesting that heating sources localized to the CPD must be present. The CPD gas mass is greater than or similar to 0.095 M (Jup) similar or equal to 30 M (circle plus) adopting a standard (CO)-C-13 abundance. From the nondetection of millimeter continuum emission at the location of the CPD (3 sigma flux density less than or similar to 26.4 mu Jy), we infer that the CPD dust mass is less than or similar to 0.027 M (circle plus) similar or equal to 2.2 lunar masses, indicating a low dust-to-gas mass ratio of less than or similar to 9 x 10(-4). We discuss the formation mechanism of the CPD-hosting giant planet on a wide orbit in the framework of gravitational instability and pebble accretion.
- ItemThe Disk Substructures at High Angular Resolution Program (DSHARP). VIII. The Rich Ringed Substructures in the AS 209 Disk(2018) Guzman, Viviana V.; Huang, Jane; Andrews, Sean M.; Isella, Andrea; Perez, Laura M.; Carpenter, John M.; Dullemond, Cornelis P.; Ricci, Luca; Birnstiel, Tilman; Zhang, Shangjia; Zhu, Zhaohuan; Bai, Xue-Ning; Benisty, Myriam; Oberg, Karin I.; Wilner, David J.We present a detailed analysis of the high angular resolution (0.'' 037, corresponding to 5 au) observations of the 1.25. mm continuum and (CO)-C-12 2 - 1 emission from the disk around the T. Tauri star AS. 209. AS. 209 hosts one of the most unusual disks from the Disk Substructures at High Angular Resolution Project sample, the first high angular resolution Atacama Large Millimeter Array survey of disks, as nearly all of the emission can be explained with concentric Gaussian rings. In particular, the dust emission consists of a series of narrow and closely spaced rings in the inner similar to 60 au, two well-separated bright rings in the outer disk, centered at 74 and 120 au, and at least two fainter emission features at 90 and 130 au. We model the visibilities with a parametric representation of the radial surface brightness profile, consisting of a central core and seven concentric Gaussian rings. Recent hydrodynamical simulations of low-viscosity disks show that super-Earth planets can produce the multiple gaps seen in AS. 209 millimeter continuum emission. The (CO)-C-12 line emission is centrally peaked and extends out to similar to 300 au, much farther than the millimeter dust emission. We find axisymmetric, localized deficits of CO emission around four distinct radii, near 45, 75, 120, and 210 au. The outermost gap is located well beyond the edge of the millimeter dust emission, and therefore cannot be due to dust opacity and must be caused by a genuine CO surface density reduction, due either to chemical effects or depletion of the overall gas content.
- ItemThe Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview(2018) Andrews, Sean M.; Huang, Jane; Perez, Laura M.; Isella, Andrea; Dullemond, Cornelis P.; Kurtovic, Nicolás T.; Guzmán Veloso, Viviana Gabriela; Carpenter, John M.; Wilner, David J.; Zhang, Shangjia; Zhu, Zhaohuan; Birnstiel, Tilman; Bai, Xue-Ning; Benisty, Myriam; Hughes, A. Meredith; Öberg, Karin I.; Ricci, Luca
- ItemThe Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substructures(2018) Huang, Jane; Andrews, Sean M.; Dullemond, Cornelis P.; Isella, Andrea; Perez, Laura M.; Guzmán Veloso, Viviana Gabriela; Öberg, Karin I.; Zhu, Zhaohuan; Zhang, Shangjia; Bai, Xue-Ning; Benisty, Myriam; Birnstiel, Tilman; Carpenter, John M.; Hughes, A. Meredith; Ricci, Luca; Weaver, Erik; Wilner, David J.
- ItemThe Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM Lup, and WaOph 6 Disks(2018) Huang, Jane; Andrews, Sean M.; Perez, Laura M.; Zhu, Zhaohuan; Dullemond, Cornelis P.; Isella, Andrea; Benisty, Myriam; Bai, Xue-Ning; Birnstiel, Tilman; Guzmán Veloso, Viviana Gabriela; Carpenter, John M.; Hughes, A. Meredith; Öberg, Karin I.; Ricci, Luca; Wilner, David J.; Zhang, Shangjia
- ItemThe Disk Substructures at High Angular Resolution Project (DSHARP). IV. Characterizing Substructures and Interactions in Disks around Multiple Star Systems(2018) Kurtovic, Nicolas T.; Perez, Laura M.; Benisty, Myriam; Zhu, Zhaohuan; Zhang, Shangjia; Huang, Jane; Andrews, Sean M.; Dullemond, Cornelis P.; Isella, Andrea; Guzmán Veloso, Viviana Gabriela; Bai, Xue-Ning; Carpenter, John M.; Ricci, Luca; Wilner, David J.
- ItemThe Disk Substructures at High Angular Resolution Project (DSHARP). X. Multiple Rings, a Misaligned Inner Disk, and a Bright Arc in the Disk around the T Tauri star HD 143006(2018) Perez, Laura M.; Benisty, Myriam; Andrews, Sean M.; Isella, Andrea; Dullemond, Cornelis P.; Huang, Jane; Kurtovic, Nicolás T.; Guzmán Veloso, Viviana Gabriela; Zhu, Zhaohuan; Birnstiel, Tilman; Zhang, Shangjia; Carpenter, John M.; Wilner, David J.; Ricci, Luca; Bai, Xue-Ning; Weaver, Erik; Öberg, Karin I.