Browsing by Author "Polo, Jesus"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAdvances in aerosol optical depth evaluation from broadband direct normal irradiance measurements(2021) Salmon, Alois; Quinones, Gonzalo; Soto, Gonzalo; Polo, Jesus; Gueymard, Christian; Ibarra, Mercedes; Cardemil, Jose; Escobar, Rodrigo; Marzo, AitorAerosols are part of the attenuation processes that impact solar radiation within the atmosphere. They influence the availability and spectrum of the solar resource for each location at the earth's surface. The present study presents advances in the development of a methodology intended to estimate the aerosol optical depth (AOD) at a given location from broadband direct normal irradiance (DNI) measurements and an appropriate radiative transfer model (RTM) operated backwards. For this purpose, databases provided by AERONET and BSRN at 16 stations throughout the world are jointly employed as inputs to the proposed methodology. The validation of two RTMs (SMARTS and SOLIS) is first undertaken to estimate DNI under clear-sky conditions at each station, assuming both AOD and additional atmospheric inputs are known from sunphotometric measurements. Results indicate that both models achieve good performance, characterized by a relative rRMSE of 3.2% for SMARTS and 3.8% for SOLIS. In the second, and most important stage, the AOD at 550 nm (AOD550) is derived using these models again, but in an iterative mode, now using the 1-minute DNI measurements as inputs. Periods of clear line of sight to the sun first need to be selected from the irradiance measurement record. This, along with other difficulties, make this operation prone to errors when only DNI measurements are available. In spite of this, the results show that AOD can be estimated with a 16-site average mean bias error of only between -0.024 and 0.015 AOD unit and an absolute RMSE between 0.025 and 0.050 AOD unit (compared to the AERONET ground truth), depending on model. Notable improvements are obtained if secondary atmospheric variables are extracted from the MERRA-2 reanalysis and are included as inputs for local computations. The present results suggest that the method is able to compare favorably with AOD estimates from MERRA-2 predictions or MODIS observations, for instance.
- ItemSolar Potential Uncertainty in Building Rooftops as a Function of Digital Surface Model Accuracy(2023) Polo, Jesus; Garcia, Redlich J.Solar cadasters are excellent tools for determining the most suitable rooftops and areas for PV deployment in urban environments. There are several open models that are available to compute the solar potential in cities. The Solar Energy on Building Envelopes (SEBE) is a powerful model incorporated in a geographic information system (QGIS). The main input for these tools is the digital surface model (DSM). The accuracy of the DSM can contribute significantly to the uncertainty of the solar potential, since it is the basis of the shading and sky view factor computation. This work explores the impact of two different methodologies for creating a DSM to the solar potential. Solar potential is estimated for a small area in a university campus in Madrid using photogrammetry from google imagery and LiDAR data to compute different DSM. Large differences could be observed in the building edges and in the areas with a more complex and diverse topology that resulted in significant differences in the solar potential. The RSMD at a measuring point in the building rooftop can range from 10% to 50% in the evaluation of results. However, the flat and clear areas are much less affected by these differences. A combination of both techniques is suggested as future work to create an accurate DSM.