Browsing by Author "Ponce, Ingrid"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCover Picture: Electron Spin-Dependent Electrocatalysis for the Oxygen Reduction Reaction in a Chiro-Self-Assembled Iron Phthalocyanine Device (Angew. Chem. Int. Ed. 4/2024)(2024) Scarpetta-Pizo, Laura; Venegas, Ricardo; Barrias, Pablo; Munoz-Becerra, Karina; Vilches-Labbe, Nayareth; Mura, Francisco; Mendez-Torres, Ana Maria; Ramirez-Tagle, Rodrigo; Toro-Labbe, Alejandro; Hevia, Samuel; Zagal, Jose H.; Onate, Ruben; Aspee, Alexis; Ponce, Ingrid
- ItemElectron Spin-Dependent Electrocatalysis for the Oxygen Reduction Reaction in a Chiro-Self-Assembled Iron Phthalocyanine Device(2023) Scarpetta-Pizo, Laura; Venegas, Ricardo; Barrias, Pablo; Munoz-Becerra, Karina; Vilches-Labbe, Nayareth; Mura, Francisco; Mendez-Torres, Ana Maria; Ramirez-Tagle, Rodrigo; Toro-Labbe, Alejandro; Hevia, Samuel; Zagal, Jose H.; Onate, Ruben; Aspee, Alexis; Ponce, IngridThe chiral-induced spin selectivity effect (CISS) is a breakthrough phenomenon that has revolutionized the field of electrocatalysis. We report the first study on the electron spin-dependent electrocatalysis for the oxygen reduction reaction, ORR, using iron phthalocyanine, FePc, a well-known molecular catalyst for this reaction. The FePc complex belongs to the non-precious catalysts group, whose active site, FeN4, emulates catalytic centers of biocatalysts such as Cytochrome c. This study presents an experimental platform involving FePc self-assembled to a gold electrode surface using chiral peptides (L and D enantiomers), i.e., chiro-self-assembled FePc systems (CSAFePc). The chiral peptides behave as spin filters axial ligands of the FePc. One of the main findings is that the peptides ' handedness and length in CSAFePc can optimize the kinetics and thermodynamic factors governing ORR. Moreover, the D-enantiomer promotes the highest electrocatalytic activity of FePc for ORR, shifting the onset potential up to 1.01 V vs. RHE in an alkaline medium, a potential close to the reversible potential of the O2/H2O couple. Therefore, this work has exciting implications for developing highly efficient and bioinspired catalysts, considering that, in biological organisms, biocatalysts that promote O2 reduction to water comprise L-enantiomers.
- ItemElucidating the electronic synergetic effects in heteroatomic doped FeN4-C-N-R (R= -F, -Cl, -Br) oxygen reduction catalysts(2023) Escobar, Gonzalo; Venegas, Ricardo; Ponce, Ingrid; Toro-Labbe, Alejandro; Zagal, Jose H.; Recio, F. Javier; Munoz-Becerra, KarinaThe structural and electronic characteristics of FeN4 are the determining factors in the catalytic performance of heat-treated Fe-N-C materials, as they serve as active sites. The insertion of heteroatoms as co-dopants (B, S, halogens) can induce electronic effects in the carbon matrix that improves their ORR catalytic activity. Therefore, it has become essential to combine experimental studies with DFT approaches to rationally design this type of catalyst. In this work, we evaluated by means of first principle DFT approaches, the ORR activity for the Fe (phen)2N2 moiety including atoms/functionalities with different atomic radii and electronegativity, to resemble co-doped Fe-N-C-R catalysts. The results showed that the inclusion of halogens heteroatoms (-F, -Cl, and -Br) in the graphitic N-C surrounding the FeN4 core could improve its ORR activity in terms of Fe-O2 binding energy that is related to the Fe(III)/Fe(II) formal potential and, in consequence, with the on-set potential for the ORR. The high expected ORR activity is obtained for bromide co-doped FeN4 catalyst (FeN4-C-Br) since -Br atoms act synergistically, inducing long- and short-range electronic effects over both the FeN4 unit and N-pyridinic-like functions that change the electronic distribution over the aromatic N-C structure modulating the Fe acidity, FeO2 binding, and Fe-O2 orbital interaction.
- ItemUsing reactivity predictors for enhancing the electrocatalytic activity of MN4 molecular catalysts for the oxygen reduction reaction: The role of the N-pyridinium functional group in the porphyrazine-derivative ligands(2023) Scarpetta-Pizo, Laura; Venegas, Ricardo; Munoz-Becerra, Karina; Munoz, Lisa; Toro-Labbe, Alejandro; Darwish, Nadim; Matute, Ricardo; Onate, Ruben; Zagal, Jose H.; Ponce, IngridUsing reactivity predictors to enhance or control the electrocatalytic activity of materials is a fascinating concept. This is especially true for the development of alternative platinum metal group-free materials as it facilitates the rational design of active catalytic materials for the oxygen reduction reaction (ORR). In previous work, we have found that the peripheral and non-peripheral electron-withdrawing effects and the electron-pull effect from axial extraplanar ligand in iron-phthalocyanine (FePc) are key factors in improving the binding energy between the active Fe site and O2 resulting in an increase of the electrocatalytic activity of FePcs for the ORR. In this work, we have utilized fundamental principles of electrocatalysis and DFT calculations to design and synthesize FeN4 molecular catalysts to increase their catalytic performance for the ORR through the "pull" effect. To achieve this, by chemical synthesis, we have incorporated pyridinium functional groups (N+py) in peripheral and non -peripheral positions into the porphyrazine cyclic ligands. In this fashion we obtain the porphyrazinium molec-ular catalysts, [Fe(II)2,3-(TMe)TPyPz]4+ and [Fe(II)3,4-(TMe)TPyPz]4+. Because these new compounds are not commercially available and, to the best of our knowledge, they have not been tested for ORR. In order to determine their effectiveness, we have compared porphyrazinium with neutral analog porphyrazine compounds (Fe(II)TPyPz) and perfluorinated and perchlorinated iron phthalocyanines, which are currently the best molecular catalysts for ORR. The electrocatalytic activity was determined for each molecular catalyst deposited on the edge plane of a graphite electrode (EPG) surface in an alkaline medium. Only for the purpose of comparison we include two Fe porphyrins studied previously, which show low activity for ORR. Although the DFT theoretical analysis of porphyrazinium complexes suggests a high activity for these catalysts, our experimental findings revealed the opposite trend. Therefore, this finding makes us reconsider the interfacial effects, such as the counter-ions effects on N+py that could influence the electron-pull effect, opening new insights for designing molecular catalysts considering interface engineering. Moreover we report for the first time, the reactivity linear relationship between the metal-centered redox potential gap (E degrees Fe(III)/(II) - E degrees Fe(II)/(I))) with the electrocatalytic activity for ORR for all catalysts studied, emerging this potential gap as a possible and promising new reactivity descriptor for ORR in MN4 catalyst.