Browsing by Author "Prasher, Parteek"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemLuteolin: a favonoid with a multifaceted anticancer potential(2022) Prasher, Parteek; Sharma, Mousmee; Singh, Sachin K.; Gulati, Monica; Chellappan, Dinesh K.; Zacconi, Flavia C. M.; De Rubis, Gabriele; Gupta, Gaurav; Sharifi-Rad, Javad; Cho, William C.; Dua, KamalTherapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.
- ItemProtein and peptide delivery to lungs by using advanced targeted drug delivery(2022) Chellappan, Dinesh Kumar; Prasher, Parteek; Saravanan, Vilashini; Yee, Vanessa See Vern; Chi, Wendy Chai Wen; Wong, Jia Wei; Wong, Joon Kang; Wong, Jing Tong; Wan, Wai; Chellian, Jestin; Molugulu, Nagashekhara; Prabu, Sakthivel Lakshmana; Ibrahim, Rania; Darmarajan, Thiviya; Candasamy, Mayuren; Singh, Pankaj Kumar; Mishra, Vijay; Shastri, Madhur D.; Zacconi, Flavia C. M.; Chakraborty, Amlan; Mehta, Meenu; Gupta, Piyush Kumar; Dureja, Harish; Gulati, Monica; Singh, Sachin Kumar; Gupta, Gaurav; Jha, Niraj Kumar; Oliver, Brian Gregory George; Dua, KamalThe challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
- ItemTargeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems(ELSEVIER IRELAND LTD, 2022) Prasher, Parteek; Sharma, Mousmee; Singh, Sachin Kumar; Gulati, Monica; Jha, Niraj Kumar; Gupta, Piyush Kumar; Gupta, Gaurav; Chellappan, Dinesh Kumar; Zacconi, Flavia C. M.; Pinto, Terezinha de Jesus Andreoli; Chan, Yinghan; Liu, Gang; Paudel, Keshav Raj; Hansbro, Philip M.; Oliver, Brian Gregory George; Dua, KamalMucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
- ItemToward the cholinesterase inhibition potential of TADDOL derivatives: Seminal biological and computational studies(2022) Constantino, Andrea R.; Charbe, Nitin Bharat; Duarte, Yorley; Gutierrez, Margarita; Giordano Villatoro, Ady; Prasher, Parteek; Dua, Kamal; Mandolesi, Sandra; Zacconi, Flavia C. M.Alzheimer's disease (AD) is a degenerative neurological disease characterized by gradual loss of cognitive skills and memory. The exact pathogenesis involved still remains unrevealed, but several studies indicate the involvement of an array of different enzymes, underlining the multifactorial character of the disease. Inhibition of these enzymes is therefore a powerful approach in the development of AD treatments, with promising candidates, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase. Interestingly, AChE is the target of a major pesticide family (organophosphates), with several reports indicating an intersection between the pesticide's activity and AD. In this study, various TADDOL derivatives were synthesized and their in vitro activities as AChE/BuChE inhibitors as well as their antioxidant activities were studied. Molecular modeling studies revealed the capability of TADDOL derivatives to bind to AChE and induce inhibition, especially compounds 2b and 3c furnishing IC50 values of 36.78 +/- 8.97 and 59.23 +/- 5.31 mu M, respectively. Experimental biological activities and molecular modeling studies clearly demonstrate that TADDOL derivatives with specific stereochemistry have an interesting potential for the design of potent AChE inhibitors. The encouraging results for compounds 2b and 3c indicate them as promising scaffolds for selective and potent AChE inhibitors.