Browsing by Author "Ramirez-Sarmiento, Cesar A."
Now showing 1 - 20 of 26
Results Per Page
Sort Options
- ItemA contact-based analysis of local energetic frustration dynamics identifies key residues enabling RfaH fold-switch(2024) Gonzalez-Higueras, Jorge; Freiberger, Maria Ines; Galaz-Davison, Pablo; Parra, R. Gonzalo; Ramirez-Sarmiento, Cesar A.Fold-switching enables metamorphic proteins to reversibly interconvert between two highly dissimilar native states to regulate their protein functions. While about 100 proteins have been identified to undergo fold-switching, unveiling the key residues behind this mechanism for each protein remains challenging. Reasoning that fold-switching in proteins is driven by dynamic changes in local energetic frustration, we combined fold-switching simulations generated using simplified structure-based models with frustration analysis to identify key residues involved in this process based on the change in the density of minimally frustrated contacts during refolding. Using this approach to analyze the fold-switch of the bacterial transcription factor RfaH, we identified 20 residues that significantly change their frustration during its fold-switch, some of which have been experimentally and computationally reported in previous works. Our approach, which we developed as an additional module for the FrustratometeR package, highlights the role of local frustration dynamics in protein fold-switching and offers a robust tool to enhance our understanding of other proteins with significant conformational shifts.
- ItemActive Site Flexibility as a Hallmark for Efficient PET Degradation by I-sakaiensis petase(2018) Fecker, Tobias; Galaz Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto; Ramirez-Sarmiento, Cesar A.
- ItemAllosteric couplings upon binding of RfaH to transcription elongation complexes(2022) Alejandro Molina, Jose; Galaz-Davison, Pablo; Komives, Elizabeth A.; Artsimovitch, Irina; Ramirez-Sarmiento, Cesar A.In every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis. Some of these differences could be due to conformational changes in RNAP and NusG-like proteins, which cannot be captured in static structures. Here, we employed hydrogen-deuterium exchange mass spectrometry to investigate changes in local and non-local structural dynamics of Escherichia coli NusG and its paralog RfaH, which have opposite effects on expression of xenogenes, upon binding to TEC. We found that NusG and RfaH regions that bind RNAP became solvent-protected in factor-bound TECs, whereas RNAP regions that interact with both factors showed opposite deuterium uptake changes when bound to NusG or RfaH. Additional changes far from the factor-binding site were observed only with RfaH. Our results provide insights into differences in structural dynamics exerted by NusG and RfaH during binding to TEC, which may explain their different functional outcomes and allosteric regulation of transcriptional pausing by RfaH.
- ItemAn Evolutionary Marker of the Ribokinase Superfamily Is Responsible for Zinc-Mediated Regulation of Human Pyridoxal Kinase(2020) Ramirez-Sarmiento, Cesar A.; Engelberger, Felipe; Guixe, VictoriaThe ribokinase superfamily catalyzes the phosphorylation of a vast diversity of substrates, and its members are characterized by the conservation of a common structural fold along with highly conserved sequence motifs responsible for phosphoryl transfer (GXGD) and stabilization of the metal-nucleotide complex (NXXE). Recently, a third motif (HXE) exclusive from ADP-dependent enzymes was identified, with its glutamic acid participating in water-mediated interactions with the metal-nucleotide complex and in stabilization of the ternary complex during catalysis. In this work, we bioinformatically determine that the aspartic acid of another motif (DPV), exclusively found in hydroxyethyl thiazole (THZK), hydroxymethyl pyrimidine (HMPK) and pyridoxal kinases (PLK), is structurally equivalent to the acidic residue in the HXE motif. Moreover, this residue is highly conserved among all ribokinase superfamily members. To determine whether the functional role of the DPV motif is similar to the HXE motif, we employed molecular dynamics simulations using crystal structures of phosphoryl donor substrate-complexed THZK and PLK, showing that its aspartic acid participated in water-mediated or direct interactions with the divalent metal of the metal-nucleotide complex. Lastly, enzyme kinetic assays on human PLK, an enzyme that utilizes zinc, showed that site-directed mutagenesis of the aspartic acid from the DPV motif abolishes the inhibition of this enzyme by increasing free zinc concentrations. Altogether, our results highlight that the DPV and HXE motifs are evolutionary markers of the functional and structural divergence of the ribokinase superfamily and evidence the role of the DPV motif in the interaction with both free and nucleotide-complexed divalent metals in the binding site of these enzymes.
- ItemAn Open One-Step RT-qPCR for SARS-CoV-2 detection(2024) Cerda, Ariel; Rivera, Maira; Armijo, Grace; Ibarra-Henriquez, Catalina; Reyes, Javiera; Blazquez-Sanchez, Paula; Aviles, Javiera; Arce, Anibal; Seguel, Aldo; Brown, Alexander J.; Vasquez, Yesseny; Cortez-San Martin, Marcelo; Cubillos, Francisco A.; Garcia, Patricia; Ferres, Marcela; Ramirez-Sarmiento, Cesar A.; Federici, Fernan; Gutierrez, Rodrigo A.The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer. The protocol utilized M-MLV RT and Taq DNA pol enzymes to perform a Taqman probe-based assay. Synthetic RNA samples were used to validate the One-Step RT-qPCR components, demonstrating sensitivity comparable to a commercial kit routinely employed in clinical settings for patient diagnosis. Further evaluation on 40 clinical samples (20 positive and 20 negative) confirmed its comparable diagnostic accuracy. This study represents a proof of concept for an open approach to developing diagnostic kits for viral infections and diseases, which could provide a cost-effective and accessible solution for less developed countries.
- ItemAntarctic Polyester Hydrolases Degrade Aliphatic and Aromatic Polyesters at Moderate Temperatures(2022) Blazquez-Sanchez, Paula; Engelberger, Felipe; Cifuentes-Anticevic, Jeronimo; Sonnendecker, Christian; Grinen, Aransa; Reyes, Javiera; Diez, Beatriz; Guixe, Victoria; Richter, P. Konstantin; Zimmermann, Wolfgang; Ramirez-Sarmiento, Cesar A.Polyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60 degrees C and 70 degrees C for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase IsPETase from the mesophilic bacterium Ideonella sakaiensis has also been reported. We show that polyester hydrolases from the Antarctic bacteria Moraxella sp. strain TA144 (Mors1) and Oleispira antarctica RB-8 (OaCut) were able to hydrolyze the aliphatic polyester polycaprolactone as well as the aromatic polyester PET at a reaction temperature of 25 degrees C. Mors1 caused a weight loss of amorphous PET films and thus constitutes a PET-degrading psychrophilic enzyme. Comparative modeling of Mors1 showed that the amino acid composition of its active site resembled both thermophilic and mesophilic PET hydrolases. Lastly, bioinformatic analysis of Antarctic metagenomic samples demonstrated that members of the Moraxellaceae family carry candidate genes coding for further potential psychrophilic PET hydrolases.
- ItemCoevolution-derived native and non-native contacts determine the emergence of a novel fold in a universally conserved family of transcription factors(2022) Galaz-Davison, Pablo; Ferreiro, Diego U.; Ramirez-Sarmiento, Cesar A.The NusG protein family is structurally and functionally conserved in all domains of life. Its members directly bind RNA polymerases and regulate transcription processivity and termination. RfaH, a divergent sub-family in its evolutionary history, is known for displaying distinct features than those in NusG proteins, which allows them to regulate the expression of virulence factors in enterobacteria in a DNA sequence-dependent manner. A striking feature is its structural interconversion between an active fold, which is the canonical NusG three-dimensional structure, and an autoinhibited fold, which is distinctively novel. How this novel fold is encoded within RfaH sequence to encode a metamorphic protein remains elusive. In this work, we used publicly available genomic RfaH protein sequences to construct a complete multiple sequence alignment, which was further augmented with metagenomic sequences and curated by predicting their secondary structure propensities using JPred. Coevolving pairs of residues were calculated from these sequences using plmDCA and GREMLIN, which allowed us to detect the enrichment of key metamorphic contacts after sequence filtering. Finally, we combined our coevolutionary predictions with molecular dynamics to demonstrate that these interactions are sufficient to predict the structures of both native folds, where coevolutionary-derived non-native contacts may play a key role in achieving the compact RfaH novel fold. All in all, emergent coevolutionary signals found within RfaH sequences encode the autoinhibited and active folds of this protein, shedding light on the key interactions responsible for the action of this metamorphic protein.
- ItemConcerted transformation of a hyper-paused transcription complex and its reinforcing protein(2024) Zuber, Philipp K.; Said, Nelly; Hilal, Tarek; Wang, Bing; Loll, Bernhard; Gonzalez-Higueras, Jorge; Ramirez-Sarmiento, Cesar A.; Belogurov, Georgiy A.; Artsimovitch, Irina; Wahl, Markus C.; Knauer, Stefan H.RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an alpha-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a beta-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.
- ItemConformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation(2023) Crnjar, Alessandro; Grinen, Aransa; Kamerlin, Shina C. L.; Ramirez-Sarmiento, Cesar A.Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from Ideonella sakaiensis (IsPETase) having optimal catalytic activity at 30-35 degrees C. Crystal structures of IsPETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to IsPETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease Topt. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of IsPETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in IsPETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in IsPETase.
- ItemDeveloping and Implementing Cloud-Based Tutorials That Combine Bioinformatics Software, Interactive Coding, and Visualization Exercises for Distance Learning on Structural Bioinformatics(2021) Engelberger, Felipe; Galaz-Davison, Pablo; Bravo, Graciela; Rivera, Maira; Ramirez-Sarmiento, Cesar A.The COVID-19 pandemic has swiftly forced a change in learning strategies across educational institutions, from extensively relying on in-person activities toward online teaching. It is particularly difficult to adapt courses that depend on physical equipment to be now carried out remotely. This is the case for bioinformatics, which typically requires dedicated computer classrooms, as the logistics of granting remote access to a workstation or relying on the computational resources of each student is not trivial. A possible workaround is using cloud server-based computing resources, such as Google Colaboratory, a free web browser application that allows the writing and execution of Python programming through Jupyter notebooks, integrating text, images, and code cells. Following a cloud-based approach, we migrated the practical activities of a course on molecular modeling and simulation into the Google Colaboratory environment resulting in 12 tutorials that introduce students to topics such as phylogenetic analysis, molecular modeling, molecular docking, several flavors of molecular dynamics, and coevolutionary analysis. Each of these notebooks includes a brief introduction to the topic, software installation, execution of the required tools, and analysis of results, with each step properly described. Using a Likert scale questionnaire, a pool of students positively evaluated these tutorials in terms of the time required for their completion, their ability to understand the content and exercises developed in each session, and the practical significance and impact that these computational tools have on scientific research. All tutorials are freely available at https: //github.com/pb3lab/ibm3202.
- ItemDifferential Local Stability Governs the Metamorphic Fold Switch of Bacterial Virulence Factor RfaH(2020) Galaz Davison, Pablo; Molina Ramírez, José Alejandro; Silletti, S; Komives, EA; Knauer, SH; Artsimovitch, I; Ramirez-Sarmiento, Cesar A.
- ItemDimer dissociation is a key energetic event in the fold-switch pathway of KaiB(2022) Rivera, Maira; Galaz-Davison, Pablo; Retamal-Farfan, Ignacio; Komives, Elizabeth A.; Ramirez-Sarmiento, Cesar A.Cyanobacteria possesses the simplest circadian clock, composed of three proteins that act as a phosphorylation oscillator: KaiA, KaiB, and KaiC. The timing of this oscillator is determined by the fold-switch of KaiB, a structural rearrangement of its C-terminal half that is accompanied by a change in the oligomerization state. During the day, KaiB forms a stable tetramer (gsKaiB), whereas it adopts a monomeric thioredoxin-like fold during the night (fsKaiB). Although the structures and functions of both native states are well studied, little is known about the sequence and structure determinants that control their structural interconversion. Here, we used confinement molecular dynamics (CCR-MD) and folding simulations using structure-based models to show that the dissociation of the gsKaiB dimer is a key energetic event for the fold-switch. Hydrogen-deuterium ex-change mass spectrometry (HDXMS) recapitulates the local stability of protein regions reported by CCR-MD, with both ap-proaches consistently indicating that the energy and backbone flexibility changes are solely associated with the region that fold-switches between gsKaiB and fsKaiB and that the localized regions that differentially stabilize gsKaiB also involve regions outside the dimer interface. Moreover, two mutants (R23C and R75C) previously reported to be relevant for altering the rhyth-micity of the Kai clock were also studied by HDXMS. Particularly, R75C populates dimeric and monomeric states with a deute-rium incorporation profile comparable to the one observed for fsKaiB, emphasizing the importance of the oligomerization state of KaiB for the fold-switch. These findings suggest that the information necessary to control the rhythmicity of the cyanobacterial biological clock is, to a great extent, encoded within the KaiB sequence.
- ItemDissecting the structural and functional consequences of the evolutionary proline-glycine deletion in the wing 1 region of the forkhead domain of human FoxP1(2024) Tamarin, Stephanie; Galaz-Davison, Pablo; Ramirez-Sarmiento, Cesar A.; Babul, Jorge; Medina, ExequielThe human FoxP transcription factors dimerize via three-dimensional domain swapping, a unique feature among the human Fox family, as result of evolutionary sequence adaptations in the forkhead domain. This is the case for the conserved glycine and proline residues in the wing 1 region, which are absent in FoxP proteins but present in most of the Fox family. In this work, we engineered both glycine (G) and proline-glycine (PG) insertion mutants to evaluate the deletion events in FoxP proteins in their dimerization, stability, flexibility, and DNA-binding ability. We show that the PG insertion only increases protein stability, whereas the single glycine insertion decreases the association rate and protein stability and promotes affinity to the DNA ligand.
- ItemDNA controls the dimerization of the human FoxP1 forkhead domain(2024) Kolimi, Narendar; Ballard, Jake; Peulen, Thomas; Goutam, Rajen; Duffy III, Francis X.; Ramirez-Sarmiento, Cesar A.; Babul, Jorge; Medina, Exequiel; Sanabria, HugoTranscription factors (TFs) regulate gene expression by binding to specific DNA sequences and gating access to genes. Even when the binding of TFs and their cofactors to DNA is reversible, indicating a reversible control of gene expression, there is little knowledge about the molecular effect DNA has on TFs. Using single -molecule multiparameter fluorescence spectroscopy, molecular dynamics simulations, and biochemical assays, we find that the monomeric form of the forkhead (FKH) domain of the human FoxP1 behaves as a disordered protein and increases its folded population when it dimerizes. Notably, DNA binding promotes a disordered FKH dimer bound to DNA, negatively controlling the stability of the dimeric FoxP1:DNA complex. The DNA -mediated reversible regulation on FKH dimers suggests that FoxP1-dependent gene suppression is unstable, and it must require the presence of other dimerization domains or cofactors to revert the negative impact exerted by the DNA.
- ItemDNA facilitates heterodimerization between human transcription factors FoxP1 and FoxP2 by increasing their conformational flexibility(2023) Conuecar, Ricardo; Asela, Isabel; Rivera, Maira; Galaz-Davison, Pablo; Gonzalez-Higueras, Jorge; Hamilton, George L.; Engelberger, Felipe; Ramirez-Sarmiento, Cesar A.; Babul, Jorge; Sanabria, Hugo; Medina, ExequielTranscription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules. The FoxP subfamily of transcription factors in humans is unique because they can form heterotypic interactions without DNA. However, it is unclear how they form heterodimers and how DNA binding affects their function. We used computational and experimental methods to study the structural changes in FoxP1's DNA-binding domain when it forms a heterodimer with FoxP2. We found that FoxP1 has complex and diverse conformational dynamics, transitioning between compact and extended states. Surprisingly, DNA binding increases the flexibility of FoxP1, contrary to the typical folding-upon-binding mechanism. In addition, we observed a 3-fold increase in the rate of heterodimerization after FoxP1 binds to DNA. These findings emphasize the importance of structural flexibility in promoting heterodimerization to form transcriptional complexes.
- ItemDomain tethering impacts dimerization and DNA-mediated allostery in the human transcription factor FoxP1(2023) Cruz, Perla; Paredes, Nicolas; Asela, Isabel; Kolimi, Narendar; Molina, Jose Alejandro; Ramirez-Sarmiento, Cesar A.; Goutam, Rajen; Huang, Gangton; Medina, Exequiel; Sanabria, HugoTranscription factors are multidomain proteins with specific DNA binding and regulatory domains. In the human FoxP subfamily (FoxP1, FoxP2, FoxP3, and FoxP4) of transcription factors, a 90 residue-long disordered region links a Leucine Zipper (ZIP)-known to form coiled-coil dimers-and a Forkhead (FKH) domain-known to form domain swapping dimers. We used replica exchange discrete molecular dynamics simulations, single-molecule fluorescence experiments, and other biophysical tools to understand how domain tethering in FoxP1 impacts dimerization at ZIP and FKH domains and how DNA binding allosterically regulates their dimerization. We found that domain tethering promotes FoxP1 dimerization but inhibits a FKH domain-swapped structure. Furthermore, our findings indicate that the linker mediates the mutual organization and dynamics of ZIP and FKH domains, forming closed and open states with and without interdomain contacts, thus highlighting the role of the linkers in multidomain proteins. Finally, we found that DNA allosterically promotes structural changes that decrease the dimerization propensity of FoxP1. We postulate that, upon DNA binding, the interdomain linker plays a crucial role in the gene regulatory function of FoxP1.
- ItemEffect of temperature and nucleotide on the binding of BiP chaperone to a protein substrate(2023) Rivera, Maira; Burgos-Bravo, Francesca; Engelberger, Felipe; Asor, Roi; Lagos-Espinoza, Miguel I. A.; Figueroa, Maximiliano; Kukura, Philipp; Ramirez-Sarmiento, Cesar A.; Baez, Mauricio; Smith, Steven B.; Wilson, Christian A. M.BiP (immunoglobulin heavy-chain binding protein) is a Hsp70 monomeric ATPase motor that plays broad and crucial roles in maintaining proteostasis inside the cell. Structurally, BiP is formed by two domains, a nucleotide-binding domain (NBD) with ATPase activity connected by a flexible hydrophobic linker to the substrate-binding domain. While the ATPase and substrate binding activities of BiP are allosterically coupled, the latter is also dependent on nucleotide binding. Recent structural studies have provided new insights into BiP's allostery; however, the influence of temperature on the coupling between substrate and nucleotide binding to BiP remains unexplored. Here, we study BiP's binding to its substrate at the single molecule level using thermo-regulated optical tweezers which allows us to mechanically unfold the client protein and explore the effect of temperature and different nucleotides on BiP binding. Our results confirm that the affinity of BiP for its protein substrate relies on nucleotide binding, by mainly regulating the binding kinetics between BiP and its substrate. Interestingly, our findings also showed that the apparent affinity of BiP for its protein substrate in the presence of nucleotides remains invariable over a wide range of temperatures, suggesting that BiP may interact with its client proteins with similar affinities even when the temperature is not optimal. Thus, BiP could play a role as a "thermal buffer" in proteostasis.
- ItemEngineering the catalytic activity of an Antarctic PET-degrading enzyme by loop exchange(2023) Blazquez-Sanchez, Paula; Vargas, Jhon A.; Furtado, Adriano A.; Grinen, Aransa; Leonardo, Diego A.; Sculaccio, Susana A.; Pereira, Humberto D'Muniz; Sonnendecker, Christian; Zimmermann, Wolfgang; Diez, Beatriz; Garratt, Richard C.; Ramirez-Sarmiento, Cesar A.Several hydrolases have been described to degrade polyethylene terephthalate (PET) at moderate temperatures ranging from 25 degrees C to 40 degrees C. These mesophilic PET hydrolases (PETases) are less efficient in degrading this plastic polymer than their thermophilic homologs and have, therefore, been the subject of many protein engineering campaigns. However, enhancing their enzymatic activity through rational design or directed evolution poses a formidable challenge due to the need for exploring a large number of mutations. Additionally, evaluating the improvements in both activity and stability requires screening numerous variants, either individually or using high-throughput screening methods. Here, we utilize instead the design of chimeras as a protein engineering strategy to increase the activity and stability of Mors1, an Antarctic PETase active at 25 degrees C. First, we obtained the crystal structure of Mors1 at 1.6 A resolution, which we used as a scaffold for structure- and sequence-based chimeric design. Then, we designed a Mors1 chimera via loop exchange of a highly divergent active site loop from the thermophilic leaf-branch compost cutinase (LCC) into the equivalent region in Mors1. After restitution of an active site disulfide bond into this chimera, the enzyme exhibited a shift in optimal temperature for activity to 45 degrees C and an increase in fivefold in PET hydrolysis when compared with wild-type Mors1 at 25 degrees C. Our results serve as a proof of concept of the utility of chimeric design to further improve the activity and stability of PETases active at moderate temperatures.
- ItemLocal energetic frustration conservation in protein families and superfamilies(2023) Freiberger, Maria I.; Ruiz-Serra, Victoria; Pontes, Camila; Romero-Durana, Miguel; Galaz-Davison, Pablo; Ramirez-Sarmiento, Cesar A.; Schuster, Claudio D.; Marti, Marcelo A.; Wolynes, Peter G.; Ferreiro, Diego U.; Parra, R. Gonzalo; Valencia, AlfonsoEnergetic local frustration offers a biophysical perspective to interpret the effects of sequence variability on protein families. Here we present a methodology to analyze local frustration patterns within protein families and superfamilies that allows us to uncover constraints related to stability and function, and identify differential frustration patterns in families with a common ancestry. We analyze these signals in very well studied protein families such as PDZ, SH3, alpha and beta globins and RAS families. Recent advances in protein structure prediction make it possible to analyze a vast majority of the protein space. An automatic and unsupervised proteome-wide analysis on the SARS-CoV-2 virus demonstrates the potential of our approach to enhance our understanding of the natural phenotypic diversity of protein families beyond single protein instances. We apply our method to modify biophysical properties of natural proteins based on their family properties, as well as perform unsupervised analysis of large datasets to shed light on the physicochemical signatures of poorly characterized proteins such as the ones belonging to emergent pathogens.
- ItemLow Carbon Footprint Recycling of Post-Consumer PET Plastic with a Metagenomic Polyester Hydrolase(2022) Sonnendecker, Christian; Oeser, Juliane; Richter, P. Konstantin; Hille, Patrick; Zhao, Ziyue; Fischer, Cornelius; Lippold, Holger; Blazquez-Sanchez, Paula; Engelberger, Felipe; Ramirez-Sarmiento, Cesar A.; Oeser, Thorsten; Lihanova, Yuliia; Frank, Ronny; Jahnke, Heinz-Georg; Billig, Susan; Abel, Bernd; Straeter, Norbert; Matysik, Joerg; Zimmermann, WolfgangEarth is flooded with plastics and the need for sustainable recycling strategies for polymers has become increasingly urgent. Enzyme-based hydrolysis of post-consumer plastic is an emerging strategy for closed-loop recycling of polyethylene terephthalate (PET). The polyester hydrolase PHL7, isolated from a compost metagenome, completely hydrolyzes amorphous PET films, releasing 91 mg of terephthalic acid per hour and mg of enzyme. Vertical scanning interferometry shows degradation rates of the PET film of 6.8 mu m h(-1). Structural analysis indicates the importance of leucine at position 210 for the extraordinarily high PET-hydrolyzing activity of PHL7. Within 24 h, 0.6 mg(enzyme) g(PET)(-1) completely degrades post-consumer thermoform PET packaging in an aqueous buffer at 70 degrees C without any energy-intensive pretreatments. Terephthalic acid recovered from the enzymatic hydrolysate is then used to synthesize virgin PET, demonstrating the potential of polyester hydrolases as catalysts in sustainable PET recycling processes with a low carbon footprint.