Browsing by Author "Reyes, ML"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBone metabolism in children with epidermolysis bullosa(MOSBY-ELSEVIER, 2002) Reyes, ML; Cattani, A; Gajardo, H; Garcia, C; McGrath, JA; Palisson, FWe evaluated bone mineral density, vitamin D status, and biochemical markers of bone turnover in seven children with epidermolysis bullosa (EB). Four had osteopenia (Z score, -1.5) and four 25(OH) vitamin D <34 nmol/L (14 ng/mL), two of which had hyperparathyroidism. Children with severe EB should have evaluation of bone metabolism.
- ItemCongenital lipoid adrenal hyperplasia caused by a novel splicing mutation in the gene for the steroidogenic acute regulatory protein(ENDOCRINE SOC, 2004) Gonzalez, AA; Reyes, ML; Carvajal, CA; Tobar, JA; Mosso, LM; Baquedano, P; Solar, A; Venegas, A; Fardella, CESteroidogenic acute regulatory protein (StAR) plays a crucial role in the transport of cholesterol from the cytoplasm to the inner mitochondrial membrane, facilitating its conversion to pregnenolone by cytochrome P450scc. Its essential role in steroidogenesis was demonstrated after observing that StAR gene mutations gave rise to a potentially lethal disease named congenital lipoid adrenal hyperplasia, in which virtually no steroids are produced. We report here a 2-month-old female patient, karyotype 46XY, who presented with growth failure, convulsions, dehydration, hypoglycemia, hyponatremia, hypotension, and severe hyperpigmentation suggestive of adrenal insufficiency. Serum cortisol, 17OH-progesterone, dehydroepiandrosterone sulfate, testosterone, 17OH-pregnenolone, and aldosterone levels were undetectable in the presence of high ACTH and plasma renin activity levels. Immunohistochemical analysis of testis tissues revealed the absence of StAR protein. Molecular analysis of StAR gene demonstrated a homozygous G to T mutation within the splice donor site of exon 1 (IVS1 + 1G>T). Her parents and one brother were heterozygous for this mutation. In vitro analysis of the mutation was performed in COS cells transfected with minigenes coding regions spanning exon-intron 1 to 3 carrying the mutant and the wild-type sequences. RT-PCR analyses of the mutant gene showed an abnormal mRNA transcript of 2430 bp (normal size 433 bp). Sequence analysis of the mutant mRNA demonstrated the retention of intron 1. Immunolocalization of the StAR minigene product detected the peptide in the mitochondria of COS cells transfected with the wild-type minigene but not in those transfected with the mutant minigene. We conclude that this mutation gives rise to a truncated StAR protein, which lacks an important N-terminal region and the entire lipid transfer domain.