Browsing by Author "Saa, Pedro A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemGenome-scale metabolic modeling of the human milk oligosaccharide utilization by Bifidobacterium longum subsp. infantis(2024) Román Lagos, Loreto Andrea; Melis-Arcos, Felipe; Pröschle, Tomás; Saa, Pedro A.; Garrido, Daniel; Gilbert, Jack A.Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.
- ItemRobust control of fed-batch high-cell density cultures: a simulation-based assessment(2021) Ibanez, Francisco; Saa, Pedro A.; Barzaga, Lisbel; Duarte-Mermoud, Manuel A.; Fernandez-Fernandez, Mario; Agosin, Eduardo; Perez Correa, Jose Ricardo
- ItemScreening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test(CELL PRESS, 2021) Eyheramendy, Susana; Saa, Pedro A.; Undurraga, Eduardo A.; Valencia, Carlos; Lopez, Carolina; Mendez, Luis; Pizarro Berdichevsky, Javier; Finkelstein Kulka, Andres; Solari, Sandra; Salas, Nicolas; Bahamondes, Pedro; Ugarte, Martin; Barcelo, Pablo; Arenas, Marcelo; Agosin, EduardoThe sudden loss of smell is among the earliest and most prevalent symptoms of COVID-19 when measured with a clinical psychophysical test. Research has shown the potential impact of frequent screening for olfactory dysfunction, but existing tests are expensive and time consuming. We developed a low-cost ($0.50/test) rapid psychophysical olfactory test (KOR) for frequent testing and a model-based COVID-19 screening framework using a Bayes Network symptoms model. We trained and validated the model on two samples: suspected COVID-19 cases in five healthcare centers (n = 926; 33% prevalence, 309 RT-PCR confirmed) and healthy miners (n = 1,365; 1.1% prevalence, 15 RT-PCR confirmed). The model predicted COVID-19 status with 76% and 96% accuracy in the healthcare and miners samples, respectively (healthcare: AUC = 0.79 [0.75-0.82], sensitivity: 59%, specificity: 87%; miners: AUC = 0.71 [0.63-0.79], sensitivity: 40%, specificity: 97%, at 0.50 infection probability threshold). Our results highlight the potential for low-cost, frequent, accessible, routine COVID-19 testing to support society's reopening.