Browsing by Author "Salazar Muñoz, Javier Alonso"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDiscovery of New Phenylacetone Monooxygenase Variants for the Development of Substituted Indigoids through Biocatalysis(2022) Núñez Navarro, Nicolás Ernesto; Salazar Muñoz, Javier Alonso; Castillo Suzarte, Francisco Javier; Ramírez Sarmiento, César Antonio; Poblete Castro, Ignacio; Zacconi, Flavia C. M.; Parra, LoretoIndigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.
- ItemThe Human Dermis as a Target of Nanoparticles for Treating Skin Conditions(2023) Salazar Muñoz, Javier Alonso; Carmona, Thais; Zacconi, Flavia C. M.; Venegas Yazigi, Diego; Cabello Verrugio, Claudio; Il Choi, Won; Vilos, CristianSkin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body’s internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.