Browsing by Author "Sarkis, Paula"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- ItemA long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS(2024) Jones, Matias I.; Reinarz, Yared; Brahm, Rafael; Tala Pinto, Marcelo; Eberhardt, Jan; Rojas, Felipe; Triaud, Amaury H. M. J.; Gupta, Arvind F.; Ziegler, Carl; Hobson, Melissa J.; Jordan, Andres; Henning, Thomas; Trifonov, Trifon; Schlecker, Martin; Espinoza, Nestor; Torres-Miranda, Pascal; Sarkis, Paula; Ulmer-Moll, Solene; Lendl, Monika; Uzundag, Murat; Moyano, Maximiliano; Hesse, Katharine; Caldwell, Douglas A.; Shporer, Avi; Lund, Michael B.; Jenkins, Jon M.; Seager, Sara; Winn, Joshua N.; Ricker, George R.; Burke, Christopher J.; Figueira, Pedro; Psaridi, Angelica; Al Moulla, Khaled; Mounzer, Dany; Standing, Matthew R.; Martin, David V.; Dransfield, Georgina; Baycroft, Thomas; Dragomir, Diana; Boyle, Gavin; Suc, Vincent; Mann, Andrew W.; Timmermans, Mathilde; Ducrot, Elsa; Hooton, Matthew J.; Zuniga-Fernandez, Sebastian; Sebastian, Daniel; Gillon, Michael; Queloz, Didier; Carson, Joe; Lissauer, Jack J.We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow-up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant in the transition between the super-Jupiters and brown dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480(-0.0005)(+0.0004) d, M-p = 12.74(-1.01)(+1.01) M-J, R-p = 1.026(-0.067)(+0.065) R-J and e = 0.018(-0.004)(+0.004). In addition, the RV time series revealed a significant trend at the similar to 350 m s(-1) yr(-1) level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949(-0.0003)(+0.0003) d, M-p = 2.340(-0.195)(+0.197) M-J, R-p = 1.030(-0.050)(+0.050) R-J and e = 0.021(-0.015)(+0.024), making this object a new example of a growing population of transiting warm giant planets.
- ItemA Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*(2021) Trifonov, Trifon; Brahm, Rafael; Espinoza, Nestor; Henning, Thomas; Jordan, Andres; Nesvorny, David; Dawson, Rebekah I.; Lissauer, Jack J.; Lee, Man Hoi; Kossakowski, Diana; Rojas, Felipe I.; Hobson, Melissa J.; Sarkis, Paula; Schlecker, Martin; Bitsch, Bertram; Bakos, Gaspar A.; Barbieri, Mauro; Bhatti, W.; Butler, R. Paul; Crane, Jeffrey D.; Nandakumar, Sangeetha; Diaz, Matias R.; Shectman, Stephen; Teske, Johanna; Torres, Pascal; Suc, Vincent; Vines, Jose I.; Wang, Sharon X.; Ricker, George R.; Shporer, Avi; Vanderburg, Andrew; Dragomir, Diana; Vanderspek, Roland; Burke, Christopher J.; Daylan, Tansu; Shiao, Bernie; Jenkins, Jon M.; Wohler, Bill; Seager, Sara; Winn, Joshua N.TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a (b) = 0.096 +/- 0.001 au, m (b) = 0.98 +/- 0.06 M (Jup)), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a (c) = 0.155 +/- 0.002 au, m (c) = 0.37 +/- 0.10 M (Jup)) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M (circle dot), a radius of 0.79 R (circle dot), and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
- ItemA Transiting Warm Giant Planet around the Young Active Star TOI-201(2021) Hobson, Melissa J.; Brahm, Rafael; Jordan, Andres; Espinoza, Nestor; Kossakowski, Diana; Henning, Thomas; Rojas, Felipe; Schlecker, Martin; Sarkis, Paula; Trifonov, Trifon; Thorngren, Daniel; Binnenfeld, Avraham; Shahaf, Sahar; Zucker, Shay; Ricker, George R.; Latham, David W.; Seager, S.; Winn, Joshua N.; Jenkins, Jon M.; Addison, Brett; Bouchy, Francois; Bowler, Brendan P.; Briegal, Joshua T.; Bryant, Edward M.; Collins, Karen A.; Daylan, Tansu; Grieves, Nolan; Horner, Jonathan; Huang, Chelsea; Kane, Stephen R.; Kielkopf, John; McLean, Brian; Mengel, Matthew W.; Nielsen, Louise D.; Okumura, Jack; Jones, Matias; Plavchan, Peter; Shporer, Avi; Smith, Alexis M. S.; Tilbrook, Rosanna; Tinney, C. G.; Twicken, Joseph D.; Udry, Stephane; Unger, Nicolas; West, Richard; Wittenmyer, Robert A.; Wohler, Bill; Torres, Pascal; Wright, Duncan J.We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in Transiting Exoplanet Survey Satellite photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using groundbased photometry from Next Generation Transit Survey and radial velocities from FEROS, HARPS, CORALIE, and MINERVA-Australis. TOI-201 b orbits a young (0.87(-0.49)(+0.46)) and bright (V = 9.07 mag) F-type star with a 52.9781 day period. The planet has a mass of 0.42(-0.03)(+0.05) M-J, a radius of 1.008(-0.015)(+0.012) R-J, and an orbital eccentricity of 0.28(-0.09)(+0.06); it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b are important for constraining formation and evolution theories for giant planets.
- ItemHD 2685 b: a hot Jupiter orbiting an early F-type star detected by TESS(2019) Jones, Matias, I; Brahm, Rafael; Espinoza, Nestor; Wang, Songhu; Shporer, Avi; Henning, Thomas; Jordan, Andres; Sarkis, Paula; Paredes, Leonardo A.; Hodari-Sadiki, James; Henrys, Todd; Cruz, Bryndis; Nielsen, Louise D.; Bouchy, Francois; Pepe, Francesco; Segransan, Damien; Turner, Oliver; Udry, Stephane; Marmier, Maxime; Lovis, Christophe; Bakos, Gaspar; Osip, David; Suc, Vincent; Ziegler, Carl; Tokovinin, Andrei; Law, Nick M.; Mann, Andrew W.; Relles, Howard; Collins, Karen A.; Bayliss, Daniel; Sedaghati, Elyar; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Smith, Jeffrey C.; Davies, Misty; Tenenbaum, Peter; Dittmann, Jason; Vanderburg, Andrew; Christiansen, Jessie L.; Haworth, Kari; Doty, John; Furesz, Gabor; Laughlin, Greg; Matthews, Elisabeth; Crossfield, Ian; Howell, Steve; Ciardi, David; Gonzales, Erica; Matson, Rachel; Beichman, Charles; Schlieder, JoshuaWe report on the confirmation of a transiting giant planet around the relatively hot (T-eff = 6801 +/- 76 K) star HD 2685, whose transit signal was detected in Sector 1 data of NASA's TESS mission. We confirmed the planetary nature of the transit signal using Doppler velocimetric measurements with CHIRON, CORALIE, and FEROS, as well as using photometric data obtained with the Chilean-Hungarian Automated Telescope and the Las Cumbres Observatory. From the joint analysis of photometry and radial velocities, we derived the following parameters for HD 2685 b: P =4.12688(-0.00004)(+0.00005) days, e =0.091(-0.047)(+0.039), Mp = 1.17 +/- 0.12 M-J, and R-p =1.44 +/- 0.05 R-J. This system is a typical example of an inflated transiting hot Jupiter in a low-eccentricity orbit. Based on the apparent visual magnitude (V = 9.6 mag) of the host star, this is one of the brightest known stars hosting a transiting hot Jupiter, and it is a good example of the upcoming systems that will be detected by TESS during the two-year primary mission. This is also an excellent target for future ground- and space-based atmospheric characterization as well as a good candidate for measuring the projected spin-orbit misalignment angle through the Rossiter-McLaughlin effect.
- ItemK2-287 b : An Eccentric Warm Saturn Transiting a G-dwarf(2019) Jordán Colzani, Andrés Cristóbal; Brahm Scott, Rafael; Espinoza Pérez, Néstor; Cortes, Cristian; Diaz, Matías; Drass, Holger; Henning, Thomas; Jenkins, James S.; Jones Fernández, Matías Ignacio; Rabus, Markus; Rojas, Felipe; Sarkis, Paula; Vučković, Maja; Zapata, Abner; Soto, Maritza G.; Bakos, Gáspár Á.; Bayliss, Daniel; Bhatti, Waqas; Csubry, Zoltan; Lachaume, Regis; Moraga, Víctor; Pantoja, Blake; Osip, David; Shporer, Avi; Suc, Vincent; Vásquez Godoy, Sergio Osmán
- ItemMass determination of two Jupiter-sized planets orbiting slightly evolved stars: TOI-2420 b and TOI-2485 b(2024) Carleo, Ilaria; Barragan, Oscar; Persson, Carina M.; Fridlund, Malcolm; Lam, Kristine W. F.; Messina, Sergio; Gandolfi, Davide; Smith, Alexis M. S.; Johnson, Marshall C.; Cochran, William; Osborne, Hannah L. M.; Brahm, Rafael; Ciardi, David R.; Collins, Karen A.; Everett, Mark E.; Giacalone, Steven; Guenther, Eike W.; Hatzes, Artie; Hellier, Coel; Horner, Jonathan; Kabath, Petr; Korth, Judith; MacQueen, Phillip; Masseron, Thomas; Murgas, Felipe; Nowak, Grzegorz; Rodriguez, Joseph E.; Watkins, Cristilyn N.; Wittenmyer, Rob; Zhou, George; Ziegler, Carl; Bieryla, Allyson; Boyd, Patricia T.; Clark, Catherine A.; Dressing, Courtney D.; Eastman, Jason D.; Eberhardt, Jan; Endl, Michael; Espinoza, Nestor; Fausnaugh, Michael; Guerrero, Natalia M.; Henning, Thomas; Hesse, Katharine; Hobson, Melissa J.; Howell, Steve B.; Jordan, Andres; Latham, David W.; Lund, Michael B.; Mireles, Ismael; Narita, Norio; Tala Pinto, Marcelo; Pugh, Teznie; Quinn, Samuel N.; Ricker, George; Rodriguez, David R.; Rojas, Felipe I.; Rose, Mark E.; Rudat, Alexander; Sarkis, Paula; Savel, Arjun B.; Schlecker, Martin; Schwarz, Richard P.; Seager, Sara; Shporer, Avi; Smith, Jeffrey C.; Stassun, Keivan G.; Stockdale, Chris; Trifonov, Trifon; Vanderspek, Roland; Winn, Joshua N.; Wright, DuncanContext. Hot and warm Jupiters might have undergone the same formation and evolution path, but the two populations exhibit different distributions of orbital parameters. This challenges our understanding of their actual origin. Aims. We report the results of our warm Jupiters survey, which was carried out with the CHIRON spectrograph within the KESPRINT collaboration. We addressed the question of the population origin by studying two planets that might help to bridge the gap between the two populations. Methods. We confirm two planets and determine their mass. One is a hot Jupiter (with an orbital period shorter than 10 days), TOI-2420 b, and the other is a warm Jupiter, TOI-2485 b. We analyzed them using a wide variety of spectral and photometric data in order to characterize these planetary systems. Results. We found that TOI-2420 b has an orbital period of P-b=5.8 days, a mass of M-b=0.9 M-J, and a radius of R-b=1.3 R-J, with a planetary density of 0.477 g cm(-3). TOI-2485 b has an orbital period of P-b=11.2 days, a mass of M-b=2.4 M-J, and a radius of R-b=1.1 R-J with a density of 2.36 g cm(-3). Conclusions. With the current parameters, the migration history for TOI-2420 b and TOI-2485 b is unclear: Scenarios of a high-eccentricity migration cannot be ruled out, and the characteristics of TOI-2485 b even support this scenario.
- ItemNGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event(2020) Gill, Samuel; Wheatley, Peter J.; Cooke, Benjamin F.; Jordan, Andres; Nielsen, Louise D.; Bayliss, Daniel; Anderson, David R.; Vines, Jose, I; Lendl, Monika; Acton, Jack S.; Armstrong, David J.; Bouchy, Francois; Brahm, Rafael; Bryant, Edward M.; Burleigh, Matthew R.; Casewell, Sarah L.; Eigmueller, Philipp; Espinoza, Nestor; Gillen, Edward; Goad, Michael R.; Grieves, Nolan; Gunther, Maximilian N.; Henning, Thomas; Hobson, Melissa J.; Hogan, Aleisha; Jenkins, James S.; McCormac, James; Moyano, Maximiliano; Osborn, Hugh P.; Pollacco, Don; Queloz, Didier; Rauer, Heike; Raynard, Liam; Rojas, Felipe; Sarkis, Paula; Smith, Alexis M. S.; Pinto, Marcelo Tala; Tilbrook, Rosanna H.; Udry, Stephane; Watson, Christopher A.; West, Richard G.We report the discovery of NGTS-11 b (=TOI-1847b), a transiting Saturn in a 35.46 day orbit around a mid K-type star (T-eff = 5050 +/- 80 K). We initially identified the system from a single-transit event in a TESS full-frame image light curve. Following 79 nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS-11 b approximately one year after the TESS single-transit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radial-velocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS-11 b has a radius of 0.817 +/-(0.028)(0.032) R-Jup, a mass of 0.344 +/-(0.092)(0.073) M-Jup, and an equilibrium temperature of just 435 +/-(34)(32) K, making it one of the coolest known transiting gas giants. NGTS-11 b is the first exoplanet to be discovered after being initially identified as a TESS single-transit event, and its discovery highlights the power of intense photometric monitoring in recovering longer-period transiting exoplanets from single-transit events.
- ItemPrecise Transit and Radial-velocity Characterization of a Resonant Pair: The Warm Jupiter TOI-216c and Eccentric Warm Neptune TOI-216b(2021) Dawson, Rebekah I.; Huang, Chelsea X.; Brahm, Rafael; Collins, Karen A.; Hobson, Melissa J.; Jordan, Andres; Dong, Jiayin; Korth, Judith; Trifonov, Trifon; Abe, Lyu; Agabi, Abdelkrim; Bruni, Ivan; Butler, R. Paul; Barbieri, Mauro; Collins, Kevin I.; Conti, Dennis M.; Crane, Jeffrey D.; Crouzet, Nicolas; Dransfield, Georgina; Evans, Phil; Espinoza, Nestor; Gan, Tianjun; Guillot, Tristan; Henning, Thomas; Lissauer, Jack J.; Jensen, Eric L. N.; Sainte, Wenceslas Marie; Mekarnia, Djamel; Myers, Gordon; Nandakumar, Sangeetha; Relles, Howard M.; Sarkis, Paula; Torres, Pascal; Shectman, Stephen; Schmider, Francois-Xavier; Shporer, Avi; Stockdale, Chris; Teske, Johanna; Triaud, Amaury H. M. J.; Wang, Sharon Xuesong; Ziegler, Carl; Ricker, G.; Vanderspek, R.; Latham, David W.; Seager, S.; Winn, J.; Jenkins, Jon M.; Bouma, L. G.; Burt, Jennifer A.; Charbonneau, David; Levine, Alan M.; McDermott, Scott; McLean, Brian; Rose, Mark E.; Vanderburg, Andrew; Wohler, BillTOI-216 hosts a pair of warm, large exoplanets discovered by the TESS mission. These planets were found to be in or near the 2:1 resonance, and both of them exhibit transit timing variations (TTVs). Precise characterization of the planets' masses and radii, orbital properties, and resonant behavior can test theories for the origins of planets orbiting close to their stars. Previous characterization of the system using the first six sectors of TESS data suffered from a degeneracy between planet mass and orbital eccentricity. Radial-velocity measurements using HARPS, FEROS, and the Planet Finder Spectrograph break that degeneracy, and an expanded TTV baseline from TESS and an ongoing ground-based transit observing campaign increase the precision of the mass and eccentricity measurements. We determine that TOI-216c is a warm Jupiter, TOI-216b is an eccentric warm Neptune, and that they librate in 2:1 resonance with a moderate libration amplitude of deg, a small but significant free eccentricity of for TOI-216b, and a small but significant mutual inclination of 12-39 (95% confidence interval). The libration amplitude, free eccentricity, and mutual inclination imply a disturbance of TOI-216b before or after resonance capture, perhaps by an undetected third planet.
- ItemTESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images(2021) Rodriguez, Joseph E.; Quinn, Samuel N.; Zhou, George; Vanderburg, Andrew; Nielsen, Louise D.; Wittenmyer, Robert A.; Brahm, Rafael; Reed, Phillip A.; Huang, Chelsea X.; Vach, Sydney; Ciardi, David R.; Oelkers, Ryan J.; Stassun, Keivan G.; Hellier, Coel; Gaudi, B. Scott; Eastman, Jason D.; Collins, Karen A.; Bieryla, Allyson; Christian, Sam; Latham, David W.; Carleo, Ilaria; Wright, Duncan J.; Matthews, Elisabeth; Gonzales, Erica J.; Ziegler, Carl; Dressing, Courtney D.; Howell, Steve B.; Tan, Thiam-Guan; Wittrock, Justin; Plavchan, Peter; McLeod, Kim K.; Baker, David; Wang, Gavin; Radford, Don J.; Schwarz, Richard P.; Esposito, Massimiliano; Ricker, George R.; Vanderspek, Roland K.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Addison, Brett; Anderson, D. R.; Barclay, Thomas; Beatty, Thomas G.; Berlind, Perry; Bouchy, Francois; Bowen, Michael; Bowler, Brendan P.; Brasseur, C. E.; Briceno, Cesar; Caldwell, Douglas A.; Calkins, Michael L.; Cartwright, Scott; Chaturvedi, Priyanka; Chaverot, Guillaume; Chimaladinne, Sudhish; Christiansen, Jessie L.; Collins, Kevin I.; Crossfield, Ian J. M.; Eastridge, Kevin; Espinoza, Nestor; Esquerdo, Gilbert A.; Feliz, Dax L.; Fenske, Tyler; Fong, William; Gan, Tianjun; Giacalone, Steven; Gill, Holden; Gordon, Lindsey; Granados, A.; Grieves, Nolan; Guenther, Eike W.; Guerrero, Natalia; Henning, Thomas; Henze, Christopher E.; Hesse, Katharine; Hobson, Melissa J.; Horner, Jonathan; James, David J.; Jensen, Eric L. N.; Jimenez, Mary; Jordan, Andres; Kane, Stephen R.; Kielkopf, John; Kim, Kingsley; Kuhn, Rudolf B.; Latouf, Natasha; Law, Nicholas M.; Levine, Alan M.; Lund, Michael B.; Mann, Andrew W.; Mao, Shude; Matson, Rachel A.; Mengel, Matthew W.; Mink, Jessica; Newman, Patrick; O'Dwyer, Tanner; Okumura, Jack; Palle, Enric; Pepper, Joshua; Quintana, Elisa V.; Sarkis, Paula; Savel, Arjun B.; Schlieder, Joshua E.; Schnaible, Chloe; Shporer, Avi; Sefako, Ramotholo; Seidel, Julia V.; Siverd, Robert J.; Skinner, Brett; Stalport, Manu; Stevens, Daniel J.; Stibbards, Caitlin; Tinney, C. G.; West, R. G.; Yahalomi, Daniel A.; Zhang, HuiWe present the discovery and characterization of five hot and warm Jupiters-TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b ( TIC 139375960)-based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R-P = 1.01-1.77 R-J) and have masses that range from 0.85 to 6.33 M-J. The host stars of these systems have F and G spectral types (5595 <= T-eff <= 6460 K) and are all relatively bright (9.5 < V < 10.8, 8.2 < K < 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g < 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R-P > 1.7 R-J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31(-0.30)(+) (0.28) M-J and a statistically significant, nonzero orbital eccentricity of e = 0.074(-0.022)(+) (0.021). This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.
- ItemThree Long-period Transiting Giant Planets from TESS*(2023) Brahm, Rafael; Ulmer-Moll, Solene; Hobson, Melissa J.; Jordan, Andres; Henning, Thomas; Trifonov, Trifon; Jones, Matias I.; Schlecker, Martin; Espinoza, Nestor; Rojas, Felipe I.; Torres, Pascal; Sarkis, Paula; Tala, Marcelo; Eberhardt, Jan; Kossakowski, Diana; Munoz, Diego J.; Hartman, Joel D.; Boyle, Gavin; Suc, Vincent; Bouchy, Francois; Deline, Adrien; Chaverot, Guillaume; Grieves, Nolan; Lendl, Monika; Suarez, Olga; Guillot, Tristan; Triaud, Amaury H. M. J.; Crouzet, Nicolas; Dransfield, Georgina; Cloutier, Ryan; Barkaoui, Khalid; Schwarz, Rick P.; Stockdale, Chris; Harris, Mallory; Mireles, Ismael; Evans, Phil; Mann, Andrew W.; Ziegler, Carl; Dragomir, Diana; Villanueva, Steven; Mordasini, Christoph; Ricker, George; Vanderspek, Roland; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Vezie, Michael; Youngblood, Allison; Daylan, Tansu; Collins, Karen A.; Caldwell, Douglas A.; Ciardi, David R.; Palle, Enric; Murgas, FelipeWe report the discovery and orbital characterization of three new transiting warm giant planets. These systems were initially identified as presenting single-transit events in the light curves generated from the full-frame images of the Transiting Exoplanet Survey Satellite. Follow-up radial velocity measurements and additional light curves were used to determine the orbital periods and confirm the planetary nature of the candidates. The planets orbit slightly metal-rich late F- and early G-type stars. We find that TOI 4406b has a mass of M ( P ) = 0.30 +/- 0.04 M (J), a radius of R ( P ) = 1.00 +/- 0.02 R (J), and a low-eccentricity orbit (e = 0.15 +/- 0.05) with a period of P = 30.08364 +/- 0.00005 days. TOI 2338b has a mass of M ( P ) = 5.98 +/- 0.20 M (J), a radius of R ( P ) = 1.00 +/- 0.01 R (J), and a highly eccentric orbit (e = 0.676 +/- 0.002) with a period of P = 22.65398 +/- 0.00002 days. Finally, TOI 2589b has a mass of M ( P ) = 3.50 +/- 0.10 M (J), a radius of R ( P ) = 1.08 +/- 0.03 R (J), and an eccentric orbit (e = 0.522 +/- 0.006) with a period of P = 61.6277 +/- 0.0002 days. TOI 4406b and TOI 2338b are enriched in metals compared to their host stars, while the structure of TOI 2589b is consistent with having similar metal enrichment to its host star.
- ItemThree Warm Jupiters around Solar-analog Stars Detected with TESS(2023) Eberhardt, Jan; Hobson, Melissa J.; Henning, Thomas; Trifonov, Trifon; Brahm, Rafael; Espinoza, Nestor; Jordan, Andres; Thorngren, Daniel; Burn, Remo; Rojas, Felipe I.; Sarkis, Paula; Schlecker, Martin; Pinto, Marcelo Tala; Barkaoui, Khalid; Schwarz, Richard P.; Suarez, Olga; Guillot, Tristan; Triaud, Amaury H. M. J.; Gunther, Maximilian N.; Abe, Lyu; Boyle, Gavin; Leiva, Rodrigo; Suc, Vincent; Evans, Phil; Dunckel, Nick; Ziegler, Carl; Falk, Ben; Fong, William; Rudat, Alexander; Shporer, Avi; Striegel, Stephanie; Watanabe, David; Jenkins, Jon M.; Seager, Sara; Winn, Joshua N.We report the discovery and characterization of three giant exoplanets orbiting solar-analog stars, detected by the TESS space mission and confirmed through ground-based photometry and radial velocity measurements taken at La Silla observatory with FEROS. TOI-2373 b is a warm Jupiter orbiting its host star every similar to 13.3 days, and is one of the most massive known exoplanet with a precisely determined mass and radius around a star similar to the Sun, with an estimated mass of m(p) = 9.3(-0.2)(+0.2)Mjup and a radius of r(p) = 0.93(-0.2)(+0.2) jup. With a mean density of r = 14.4 1.0 g cm + 0.9 -3, TOI-2373 b is among the densest planets discovered so far. TOI-2416 b orbits its host star on a moderately eccentric orbit with a period of similar to 8.3 days and an eccentricity of e = 0.32 0.02 + 0.02. TOI-2416 b is more massive than Jupiter with m(p) = 3.0 +0.09 M 0.10 jup, however is significantly smaller with a radius of r(p) = 0.88 + 0.02 ,R 0.02 jup, leading to a high mean density of r = 5.4 0.3 g cm + 0.3 -3. TOI-2524 b is a warm Jupiter near the hot Jupiter transition region, orbiting its star every similar to 7.2 days on a circular orbit. It is less massive than Jupiter with a mass of m(p)=0.64- + 0.04 M 0.04 jup, and is consistent with an inflated radius of r(p)= 1.00- + 0.03 R 0.02 jup, leading to a low mean density of r = 0.79 0.08 g cm + 0.08 -3. The newly discovered exoplanets TOI-2373 b, TOI-2416 b, and TOI-2524 b have estimated equilibrium temperatures of 860 10 +10 K, 1080 10 +10 K, and 1100-20 +20 K, respectively, placing them in the sparsely populated transition zone between hot and warm Jupiters.
- ItemTOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star(2021) Addison, Brett C.; Wright, Duncan J.; Nicholson, Belinda A.; Cale, Bryson; Mocnik, Teo; Huber, Daniel; Plavchan, Peter; Wittenmyer, Robert A.; Vanderburg, Andrew; Chaplin, William J.; Chontos, Ashley; Clark, Jake T.; Eastman, Jason D.; Ziegler, Carl; Brahm, Rafael; Carter, Bradley D.; Clerte, Mathieu; Espinoza, Nestor; Horner, Jonathan; Bentley, John; Jordan, Andres; Kane, Stephen R.; Kielkopf, John F.; Laychock, Emilie; Mengel, Matthew W.; Okumura, Jack; Stassun, Keivan G.; Bedding, Timothy R.; Bowler, Brendan P.; Burnelis, Andrius; Blanco-Cuaresma, Sergi; Collins, Michaela; Crossfield, Ian; Davis, Allen B.; Evensberget, Dag; Heitzmann, Alexis; Howell, Steve B.; Law, Nicholas; Mann, Andrew W.; Marsden, Stephen C.; Matson, Rachel A.; O'Connor, James H.; Shporer, Avi; Stevens, Catherine; Tinney, C. G.; Tylor, Christopher; Wang, Songhu; Zhang, Hui; Henning, Thomas; Kossakowski, Diana; Ricker, George; Sarkis, Paula; Schlecker, Martin; Torres, Pascal; Vanderspek, Roland; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Mireles, Ismael; Rowden, Pam; Pepper, Joshua; Daylan, Tansu; Schlieder, Joshua E.; Collins, Karen A.; Collins, Kevin, I; Tan, Thiam-Guan; Ball, Warrick H.; Basu, Sarbani; Buzasi, Derek L.; Campante, Tiago L.; Corsaro, Enrico; Gonzalez-Cuesta, L.; Davies, Guy R.; de Almeida, Leandro; do Nascimento, Jose-Dias, Jr.; Garcia, Rafael A.; Guo, Zhao; Handberg, Rasmus; Hekker, Saskia; Hey, Daniel R.; Kallinger, Thomas; Kawaler, Steven D.; Kayhan, Cenk; Kuszlewicz, James S.; Lund, Mikkel N.; Lyttle, Alexander; Mathur, Savita; Miglio, Andrea; Mosser, Benoit; Nielsen, Martin B.; Serenelli, Aldo M.; Aguirre, Victor Silva; Themessl, NathalieWe report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the MINERVA-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of M-P = 0.138 +/- 0.023M(J) (43.9 +/- 7.3 M-circle plus), a radius of R-P = 0.639 +/- 0.013 R-J (7.16 +/- 0.15 R-circle plus), bulk density of 0.65(-0.11)(+0.12) (cgs), and period 18.38818(-0.00084)(+0.00085) days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M-* = 1.390 +/- 0.046(Msun), R-* = 1.888 +/- 0.033 R-sun, T-eff = 6075 +/- 90 K, and vsin i = 11.3 +/- 0.5 kms(-1). Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a similar to 71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (similar to 100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.