Browsing by Author "Schulze, Steve"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemCHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE(IOP PUBLISHING LTD, 2014) Anderson, Joseph P.; Gonzalez Gaitan, Santiago; Hamuy, Mario; Gutierrez, Claudia P.; Stritzinger, Maximilian D.; Olivares, Felipe E.; Phillips, Mark M.; Schulze, Steve; Antezana, Roberto; Bolt, Luis; Campillay, Abdo; Castellon, Sergio; Contreras, Carlos; de Jaeger, Thomas; Folatelli, Gaston; Foerster, Francisco; Freedman, Wendy L.; Gonzalez, Luis; Hsiao, Eric; Krzeminski, Wojtek; Krisciunas, Kevin; Maza, Jose; McCarthy, Patrick; Morrell, Nidia I.; Persson, Sven E.; Roth, Miguel; Salgado, Francisco; Suntzeff, Nicholas B.; Thomas Osip, JoannaWe present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the "plateau" phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the "plateau" stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply "SN II" with an "s(2)" value giving the decline rate during the "plateau" phase, indicating its morphological type.
- ItemCosmic evolution and metal aversion in superluminous supernova host galaxies(2018) Schulze, Steve; Krühler, T.; Leloudas, G.; Gorosabel, J.; Mehner, A.; Buchner, J.; Kim, Sam; Ibar, Edo; Amorín, Ricardo; Herrero Illana, Rubén; Anderson, Joseph; Bauer, Franz Erik
- ItemHost Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production(2020) Modjaz, Maryam; Bianco, Federica B.; Siwek, Magdalena; Huang, Shan; Perley, Daniel A.; Fierroz, David; Liu, Yu-Qian; Arcavi, Iair; Gal-Yam, Avishay; Filippenko, Alexei, V; Blagorodnova, Nadia; Cenko, Bradley S.; Kasliwal, Mansi; Kulkarni, Shri; Schulze, Steve; Taggart, Kirsty; Zhen, WeikangUnlike ordinary supernovae (SNe), some of which are hydrogen and helium deficient (called Type Ic SNe), broad-lined Type Ic SNe (SNe Ic-bl) are very energetic events, and only SNe Ic-bl are coincident with long-duration gamma-ray bursts (GRBs). Understanding the progenitors of SN Ic-bl explosions versus those of their SN Ic cousins is key to understanding the SN-GRB relationship and jet production in massive stars. Here we present the largest existing set of host galaxy spectra of 28 SNe Ic and 14 SNe Ic-bl, all discovered by the same galaxy-untargeted survey, namely, the Palomar Transient Factory (PTF). We carefully measure their gas-phase metallicities, stellar masses (M-*), and star formation rates (SFRs). We further reanalyze the hosts of 10 literature SN-GRBs using the same methods and compare them to our PTF SN hosts with the goal of constraining their progenitors from their local environments. We find that the metallicities, SFRs, and M-* values of our PTF SN Ic-bl hosts are statistically comparable to those of SN-GRBs but significantly lower than those of the PTF SNe Ic. The mass-metallicity relations as defined by the SNe Ic-bl and SN-GRBs are not significantly different from the same relations as defined by Sloan Digital Sky Survey galaxies, contradicting claims by earlier works. Our findings point toward low metallicity as a crucial ingredient for SN Ic-bl and SN-GRB production since we are able to break the degeneracy between high SFR and low metallicity. We suggest that the PTF SNe Ic-bl may have produced jets that were choked inside the star or were able to break out of the star as unseen low-luminosity or off-axis GRBs.
- ItemPOLARIMETRY OF THE SUPERLUMINOUS SUPERNOVA LSQ14MO: NO EVIDENCE FOR SIGNIFICANT DEVIATIONS FROM SPHERICAL SYMMETRY(IOP PUBLISHING LTD, 2015) Leloudas, Giorgos; Patat, Ferdinando; Maund, Justyn R.; Hsiao, Eric; Malesani, Daniele; Schulze, Steve; Contreras, Carlos; D Ugarte Postigo, Antonio; Sollerman, Jesper; Stritzinger, Maximilian D.; Taddia, Francesco; Wheeler, J. Craig; Gorosabel, JavierWe present the first polarimetric observations of a Type I superluminous supernova (SLSN). LSQ14mo was observed with VLT/FORS2 at five different epochs in the V band, with the observations starting before maximum light and spanning 26 days in the rest frame (z. = 0.256). During this period, we do not detect any statistically significant evolution (<2 sigma) in the Stokes parameters. The average values we obtain, corrected for interstellar polarization in the Galaxy, are Q = -0.01% (+/- 0.15%) and U = -0.50% (+/- 0.14%). This low polarization can be entirely due to interstellar polarization in the SN host galaxy. We conclude that, at least during the period of observations and at the optical depths probed, the photosphere of LSQ14mo does not present significant asymmetries, unlike most lower-luminosity hydrogen-poor SNe Ib/c. Alternatively, it is possible that we may have observed LSQ14mo from a special viewing angle. Supporting spectroscopy and photometry confirm that LSQ14mo is a typical SLSN I. Further studies of the polarization of Type I SLSNe are required to determine whether the low levels of polarization are a characteristic of the entire class and to also study the implications for the proposed explosion models.
- ItemSpatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies.(2017) Cikota, Aleksandar; Kim, Sam; Cia, Annalisa De; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Patat, Ferdinando; Lunnan, Ragnhild
- ItemType Ib SN 1999dn as an example of the thoroughly mixed ejecta of Ib supernovae(2014) Cano, Z.; Schulze, Steve