Browsing by Author "Tiozzo-Lyon, Paola"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMicrofabrication approaches for oral research and clinical dentistry(2023) Tiozzo-Lyon, Paola; Andrade, Matías; Leiva-Sabadini, Camila; Morales, José; Olivares, Antonia; Ravasio, Andrea; Aguayo Paul, Sebastian DanielCurrently, there is a variety of laboratory tools and strategies that have been developed to investigate in-vivo processes using in-vitro models. Amongst these, microfabrication represents a disruptive technology that is currently enabling next-generation biomedical research through the development of complex laboratory approaches (e.g., microfluidics), engineering of micrometer scale sensors and actuators (micropillars for traction force microscopy), and the creation of environments mimicking cell, tissue, and organ-specific contexts. Although microfabrication has been around for some time, its application in dental and oral research is still incipient. Nevertheless, in recent years multiple lines of research have emerged that use microfabrication-based approaches for the study of oral diseases and conditions with micro- and nano-scale sensitivities. Furthermore, many investigations are aiming to develop clinically relevant microfabrication-based applications for diagnostics, screening, and oral biomaterial manufacturing. Therefore, the objective of this review is to summarize the current application of microfabrication techniques in oral sciences, both in research and clinics, and to discuss possible future applications of these technologies for in-vitro studies and practical patient care. Initially, this review provides an overview of the most employed microfabrication methods utilized in biomedicine and dentistry. Subsequently, the use of micro- and nano-fabrication approaches in relevant fields of dental research such as endodontic and periodontal regeneration, biomaterials research, dental implantology, oral pathology, and biofilms was discussed. Finally, the current and future uses of microfabrication technology for clinical dentistry and how these approaches may soon be widely available in clinics for the diagnosis, prevention, and treatment of relevant pathologies are presented.
- ItemMicrofabrication-based engineering of biomimetic dentin-like constructs to simulate dental aging(2024) Alvarez, Simon; Morales, Jose; Tiozzo-Lyon, Paola; Berrios, Pablo; Barraza, Valentina; Simpson, Kevin; Ravasio, Andrea; Monforte Vila, Xavier; Teuschl-Woller, Andreas; Schuh, Christina M. A. P.; Aguayo, SebastianHuman dentin is a highly organized dental tissue displaying a complex microarchitecture consisting of micrometer-sized tubules encased in a mineralized type-I collagen matrix. As such, it serves as an important substrate for the adhesion of microbial colonizers and oral biofilm formation in the context of dental caries disease, including root caries in the elderly. Despite this issue, there remains a current lack of effective biomimetic in vitro dentin models that facilitate the study of oral microbial adhesion by considering the surface architecture at the micro- and nanoscales. Therefore, the aim of this study was to develop a novel in vitro microfabricated biomimetic dentin surface that simulates the complex surface microarchitecture of exposed dentin. For this, a combination of soft lithography microfabrication and biomaterial science approaches were employed to construct a micropitted PDMS substrate functionalized with mineralized type-I collagen. These dentin analogs were subsequently glycated with methylglyoxal (MGO) to simulate dentin matrix aging in vitro and analyzed utilizing an interdisciplinary array of techniques including atomic force microscopy (AFM), elemental analysis, and electron microscopy. AFM force-mapping demonstrated that the nanomechanical properties of the biomimetic constructs were within the expected biological parameters, and that mineralization was mostly predominated by hydroxyapatite deposition. Finally, dual-species biofilms of Streptococcus mutans and Candida albicans were grown and characterized on the biofunctionalized PDMS microchips, demonstrating biofilm-specific morphologic characteristics and confirming the suitability of this model for the study of early biofilm formation under controlled conditions. Overall, we expect that this novel biomimetic dentin model could serve as an in vitro platform to study oral biofilm formation or dentin-biomaterial bonding in the laboratory without the need for animal or human tooth samples in the future., Our study aimed to develop a novel in vitro microfabricated biomimetic dentin surface that simulates the complex surface microarchitecture of exposed dentin, as well as age-derived glycation of teeth, for the growth of polymicrobial oral biofilms.