Browsing by Author "Torres, Mariett"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDetection of plastic, cellulosic micro-fragments and microfibers in Laternula elliptica from King George Island (Maritime Antarctica)(2024) Gonzalez-Aravena, Marcelo; Rotunno, Carmen; Cardenas, Cesar A.; Torres, Mariett; Morley, Simon A.; Hurley, Jessica; Caro-Lara, Luis; Pozo, Karla; Galban, Cristobal; Rondon, RodolfoIt is generally acknowledged that microplastic pollutants are prevalent in ocean waters and sediments across a range of tropical, temperate, subpolar, and polar regions. The waters surrounding King George Island are significantly impacted by human activities, particularly those related to scientific stations, fishing, and tourism. Organisms, such as Laternula elliptica, can be used as environmental monitors due to the likelihood that they will bioaccumulate pollutants. The goal of this study was to quantify and identify plastic and cellulosic microfragments and microfibers present in the soft body of clams (n = 21), collected from Fildes Bay near sewage and wastewater discharges. Plastic and cellulose microfragments and microfibers were counted, and their compositions were determined using FT-IR. All 21 individuals sampled contained fragments and fibers, with a total of 900 items detected (42.86 +/- 25.36 mean +/- SD items per individual), or 1.82 items g.wet mass(-1). 58 % of items were cellulose and 22 % plastic. Considering the plastic polymer compositions, 28.57 % were polyethylene terephthalate (PET), 21.43 % acrylic, 14.29 % high-density polyethylene (HDPE), 14.29 % Polypropylene (PP), 7.14 % ultra-high drawn polyethylene filament (UHMWPE), 7.14 % polyester and 7.14 % Polyethylene. The quantities and prevalence of MP in L. elliptica were higher than those found in other Antarctic marine species, and even in bivalves from populated regions of the world. Our work assessed the pollution status of L. elliptica near an effluent of wastewater plants and found that 95 % of individuals displayed MP and 100 % microfibers that could impact their population.
- ItemHuman exposure to polycyclic aromatic hydrocarbons in the atmosphere of an agricultural area of central Chile and inhalation cancer risk assessments(2023) Pozo, Karla; Cortés Arancibia, Sandra; Gómez, Victoria; Guida, Yago; Torres, Mariett; Carvalho, Gabriel Oliveira de; P?ibylová, Petra; Klánová, Jana; Jorquera, Héctor; CEDEUS (Chile)Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances prone to long-range atmospheric transport. Even in low concentrations, environmental exposure to PAHs can impact human health. In this study we aimed to i) investigate the occurrence of 15 polycyclic aromatic hydrocarbons (?15PAHs), from August 2016 to January 2018, in the atmosphere of Molina, using polyurethane foam disks (PAS-PUF) in central Chile; and ii) perform deterministic and probabilistic (using Monte Carlo simulations) inhalation cancer risk assessments. Gas chromatography and tandem quadrupole mass spectrometry (GC- MS/MS) measured target PAHs. Results showed ?15PAHs ranging from 2 ng m-3 to 108 ng m-3, with four-ring PAHs as the prevalent compounds, including phenanthrene (44%) and fluoranthene (24%). Winter season showed the highest PAH levels (increasing factor up to ?8 times). PAHs diagnostic ratios showed the prevalence of pyrogenic combustion (winter) and petrogenic combustion (summer). Lifetime cancer risk assessments, using BaP-eq values, indicated an increased cancer risk for the exposed population considering different risk assessment approaches. Younger individuals were the most affected by an increased cancer risk at all sampling sites. The Monte Carlo probabilistic assessment indicated that infants and toddlers could be exposed to PAH air concentrations exceeding the cancer risk threshold in over 94% of the simulations. The coldest months in the studied region are critical for human exposure and health risk due to intense wood combustion. Indoor air can be even more relevant due to the chronic inhalation of the smoke and associated chemicals.