Browsing by Author "Troncoso, P"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGenome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma(AMER ASSOC CANCER RESEARCH, 2001) Wistuba, II; Tang, MY; Maitra, A; Alvarez, H; Troncoso, P; Pimental, F; Gazdar, AFAlthough gallbladder carcinoma (GBC) is a highly malignant neoplasm, there is very limited information about the molecular changes involved in its pathogenesis. To identify the chromosomal locations of putative tumor suppressor gene loci Involved in the pathogenesis of GBC, we conducted a genome-wide allelotyping or loss of heterozygosity (LOH) analysis of GBCs. Microdissected tissue from 24 archival GBCs and their matched control DNAs were analyzed for PCR-based LOH using 169 microsatellite markers spanning all nonacrocentric autosomal arms and the X chromosome. The chromosomal arms with the greatest frequencies of LOH (greater than or equal to 60%) were 3p, 6q, 7q, 8p, 9p, 9q, 11q, 12q, 17p, 18q, 19p, 22q, and Xq. The average fractional allele loss index in GBC cases was high (0.43) and frequent breakpoints were detected in gallbladder tumors. Of interest, 21 different regions of frequent LOH (hot spots) defined as greater than or equal to 50% for individual GBC samples were detected in this neoplasm, nearly half of them confined to one microsatellite marker. We conclude that in GBC at least 21 chromosomal regions with frequent allele losses are involved, suggesting that several putative tumor suppressor genes are inactivated in its pathogenesis. Overall, these data provide global estimates of the extent of genetic changes leading to GBC and will be useful for the identification of new tumor suppressor genes and for multiple new markers for translational research.
- ItemPrevention of renal ischemic reperfusion injury using FTY 720 and ICAM-1 antisense oligonucleotides(ELSEVIER SCIENCE INC, 2003) Ortiz, AM; Troncoso, P; Kahan, BDBackground. Renal damage secondary to ischemia-reperfusion injuries (I-R) is frequent in organ transplantation and adversely affects the graft survival. An important component of this damage is caused by initial adhesion of neutrophils and lymphocytes to endothelial cells. FTY 720, which induces lymphopenia, has previously been shown to display protective effects in models of I-R. The purpose of the present study was to evaluate the combination of FTY 720 and intracellular adhesion molecule and ICAM-1 antisense oligonucleotides (AS-oligos), an agent designed to block the adhesion process.