Browsing by Author "Valladares, Fernando"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemClimbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?(2011) Valladares, Fernando; Gianoli, Ernesto; Saldana, AlfredoBackground and Aims While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey.
- ItemCosts versus risks: Architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance(2012) Valladares, Fernando; Saldana, Alfredo; Gianoli, ErnestoLight requirements and functional strategies of plants to cope with light heterogeneity in the field have a strong influence on community structure and dynamics. Shade intolerant plants often show a shade avoidance strategy involving a phytochrome-mediated stem elongation in response to changes in red : far red ratio, while shade-tolerant plants typically harvest light very efficiently. We measured plant size, stem diameter, internode and leaf lengths in randomly chosen saplings of 11 woody species differing in their shade tolerance in both a secondary forest and an old-growth temperate evergreen rainforest in southern Chile. We also recorded the irradiance spectrum and the diffuse and direct light availabilities at each sampling point. Significant differences were found for the mean light environment of the saplings of each species, which also differed in basal stem diameter, internode length and leaf length, but not in plant height. Both plant slenderness (plant height/stem diameter) and mean internode length increased with increasing light availability, but no relationship was found between any of these two traits and red : far red ratio. The change in plant slenderness with light availability was of lesser magnitude with increasing shade tolerance of the species, while internode change with light availability increased with increasing shade tolerance of the species. Shade tolerators afford higher costs (thicker stems and plants), which render more biomechanically robust plants, and respond more to the light environment in a trait strongly influencing light interception (internode length) than shade intolerant species. By contrast, less shade-tolerant plants afforded higher risks with a plastic response to escape from the understorey by making thinner plants that were biomechanically weaker and poorer light interceptors. Thus, species differing in their shade tolerances do differ in their plastic responses to light. Our results contribute to explain plant coexistence in heterogeneous light environments by improving our mechanistic understanding of species responses to light.
- ItemDistribution and abundance of vines along the light gradient in a southern temperate rain forest(2010) Gianoli, Ernesto; Saldana, Alfredo; Jimenez-Castillo, Mylthon; Valladares, FernandoQuestion: Are vines light-demanding species?
- ItemForests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest(2011) Godoy, Oscar; Saldana, Alfredo; Fuentes, Nicol; Valladares, Fernando; Gianoli, ErnestoIn the South American temperate evergreen rainforest (Valdivian forest), invasive plants are mainly restricted to open sites, being rare in the shaded understory. This is consistent with the notion of closed-canopy forests as communities relatively resistant to plant invasions. However, alien plants able to develop shade tolerance could be a threat to this unique forest. Phenotypic plasticity and local adaptation are two mechanisms enhancing invasiveness. Phenotypic plasticity can promote local adaptation by facilitating the establishment and persistence of invasive species in novel environments. We investigated the role of these processes in the recent colonization of Valdivian forest understory by the perennial alien herb Prunella vulgaris from nearby populations in open sites. Using reciprocal transplants, we found local adaptation between populations. Field data showed that the shade environment selected for taller plants and greater specific leaf areas. We found population differentiation and within-population genetic variation in both mean values and reaction norms to light variation of several ecophysiological traits in common gardens from seeds collected in sun and shade populations. The colonization of the forest resulted in a reduction of plastic responses to light variation, which is consistent with the occurrence of genetic assimilation and suggests that P. vulgaris individuals adapted to the shade have reduced probabilities to return to open sites. All results taken together confirm the potential for rapid evolution of shade tolerance in P. vulgaris and suggest that this alien species may pose a threat to the native understory flora of Valdivian forest.
- ItemFunctional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae) in pronounced moisture gradients within fog-dependent forest fragments(2015) Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J.; Perez, FernandaClimate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. puncta turn to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.
- ItemInvasive species can handle higher leaf temperature under water stress than Mediterranean natives(2011) Godoy, Oscar; de Lemos-Filho, Jose Pires; Valladares, FernandoThermal tolerance of Photosystem II (PSII) highly influences plant distribution worldwide because it allows for photosynthesis during periods of high temperatures and water stress, which are common in most terrestrial ecosystems and particularly in dry and semi-arid ones. However, there is a lack of information about how this tolerance influences invasiveness of exotic species in ecosystems with seasonal drought. To address this question for Mediterranean-type ecosystems (MTE) of the Iberian Peninsula, we carried out an experiment with fifteen phylogenetically related species (8 invasive and 7 native, Pinus pinaster Ait., Pinus radiata D. Don, Schinus molle Linn., Elaeagnus angustifolia L. Eucalyptus globulus Labill., Acacia melanoxylon R. Br., Gleditsia triacanthos L. Pistacia terebinthus L., Rhamnus alaternus L., Anagyris foetid L, Colutea arborescens L., Oenothera biennis L., Epilobium hirsutum L. Achille filipendulina Lam. and Achillea millefolium L). Seedlings were grown and maximal photochemical efficiency of PSII (F-v/F-m) was measured at two water availabilities (well-watered and with water stress). PSII thermal tolerance measurements were related to specific leaf area (SLA), which varied significantly across the study species, and to the mean potential evapotranspiration (PET) of the month with the lowest precipitation in the native areas of both groups and in the invaded area of the Iberian Peninsula. Additionally, PSII thermal tolerance measurements under water stress were phylogenetically explored. Invasive and native species neither differed in SLA nor in their thermal tolerance under well-watered conditions. For well-watered plants. SLA was significantly and positively related to PSII thermal tolerance when all species were explored together regardless of their invasive nature. However, this relationship did not persist under water stress and invasive species had higher plastic responses than Mediterranean natives resulting in higher leaf temperatures. Higher PSII thermal tolerance could explain invasiveness because it allows for longer periods of carbon acquisition under water stress. In fact, PSII thermal tolerance was positively related to the PET of the invaded and native areas of the Iberian Peninsula. PSII thermal tolerance was not related to PET at the native range of the invasive species, suggesting that successful invasive species were plastic enough to cope with novel dry conditions of the Iberian Peninsula. Moreover, our phylogenetic results indicate that future scenarios of increased aridity in MTE associated to climate change will filter invasion success by taxonomic identity. This study reveals the importance of studying ecophysiological traits to understand and better predict future biological invasions. (C) 2010 Elsevier B.V. All rights reserved.
- ItemISOLATION AND CHARACTERIZATION OF 10 MICROSATELLITE LOCI IN CNEORUM TRICOCCON (CNEORACEAE), A MEDITERRANEAN RELICT PLANT(2012) Garcia-Fernandez, Alfredo; Lazaro-Nogal, Ana; Traveset, Anna; Valladares, FernandoPremise of the study: The main aim of this study was to isolate and characterize microsatellite loci in Cneorum tricoccon (Cneoraceae), a Mediterranean shrub relict of the early Tertiary, which inhabits western Mediterranean islands and coasts. Microsatellites will be useful for investigating biogeography and landscape genetics across the species distribution range, including current or past gene flow.
- ItemLeaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison(2010) Godoy, Oscar; Castro-Diez, Pilar; Van Logtestijn, Richard S. P.; Cornelissen, Johannes H. C.; Valladares, FernandoLeaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.
- ItemLocal canopy diversity does not influence phenotypic expression and plasticity of tree seedlings exposed to different resource availabilities(2018) Bastias, Cristina C.; Valladares, Fernando; Ricote Martínez, Natalia; Benavides, Raquel
- ItemOccurrence of the Non-Native Annual Bluegrass on the Antarctic Mainland and Its Negative Effects on Native Plants(2012) Molina-Montenegro, Marco A.; Carrasco-Urra, Fernando; Rodrigo, Cristian; Convey, Peter; Valladares, Fernando; Gianoli, ErnestoFew non-native species have colonized Antarctica, although increased human activity and accelerated climate change may increase their number, distributional range, and effects on native species on the continent. We searched 13 sites on the maritime Antarctic islands and 12 sites on the Antarctic Peninsula for annual bluegrass (Poa annua), a non-native flowering plant. We also evaluated the possible effects of competition between P. annua and 2 vascular plants native to Antarctica, Antarctic pearlwort (Colobanthus quitensis) and Antarctic hairgrass (Deschampsia antarctica). We grew the native species in experimental plots with and without annual bluegrass under conditions that mimicked the Antarctic environment. After 5 months, we measured photosynthetic performance on the basis of chlorophyll fluorescence and determined total biomass of both native species. We found individual specimens of annual bluegrass at 3 different sites on the Antarctic Peninsula during the 20072008 and 20092010 austral summers. The presence of bluegrass was associated with a statistically significant reduction in biomass of pearlwort and hairgrass, whereas the decrease in biomass of bluegrass was not statistically significant. Similarly, the presence of bluegrass significantly reduced the photosynthetic performance of the 2 native species. Sites where bluegrass occurred were close to major maritime routes of scientific expeditions and of tourist cruises to Antarctica. We believe that if current levels of human activity and regional warming persist, more non-native plant species are likely to colonize the Antarctic and may affect native species.