Browsing by Author "Vazquez, Yaneisi"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemA Booster Dose of CoronaVac Increases Neutralizing Antibodies and T Cells that Recognize Delta and Omicron Variants of Concern(2022) Schultz, Barbara M.; Melo-Gonzalez, Felipe; Duarte, Luisa F.; Galvez, Nicolas M. S.; Pacheco, Gaspar A.; Soto, Jorge A.; Berrios-Rojas, Roslye, V; Gonzalez, Liliana A.; Moreno-Tapia, Daniela; Rivera-Perez, Daniela; Rios, Mariana; Vazquez, Yaneisi; Hoppe-Elsholz, Guillermo; Andrade-Parra, Catalina A.; Vallejos, Omar P.; Pina-Iturbe, Alejandro; Iturriaga, Carolina; Urzua, Marcela; Navarrete, Maria S.; Rojas, Alvaro; Fasce, Rodrigo; Fernandez, Jorge; Mora, Judith; Ramirez, Eugenio; Gaete-Argel, Aracelly; Acevedo, Monica; Valiente-Echeverria, Fernando; Soto-Rifo, Ricardo; Weiskopf, Daniela; Grifoni, Alba; Sette, Alessandro; Zeng, Gang; Meng, Weining; Gonzalez-Aramundiz, Jose, V; Gonzalez, Pablo A.; Abarca, Katia; Kalergis, Alexis M.; Bueno, Susan M.CoronaVac is an inactivated SARS-CoV-2 vaccine approved by the World Health Organization (WHO). Previous studies reported increased levels of neutralizing antibodies and specific T cells 2 and 4 weeks after two doses of CoronaVac; these levels were significantly reduced at 6 to 8 months after the two doses. Here, we report the effect of a booster dose of CoronaVac on the anti-SARS-CoV-2 immune response generated against the variants of concern (VOCs), Delta and Omicron, in adults participating in a phase III clinical trial in Chile. Volunteers immunized with two doses of CoronaVac in a 4-week interval received a booster dose of the same vaccine between 24 and 30 weeks after the second dose. Neutralization capacities and T cell activation against VOCs Delta and Omicron were assessed 4 weeks after the booster dose. We observed a significant increase in neutralizing antibodies 4 weeks after the booster dose. We also observed a rise in anti-SARS-CoV-2-specific CD4(+) T cells over time, and these cells reached a peak 4 weeks after the booster dose. Furthermore, neutralizing antibodies and SARS-CoV-2-specific T cells induced by the booster showed activity against VOCs Delta and Omicron. Our results show that a booster dose of CoronaVac increases adults' humoral and cellular anti-SARS-CoV-2 immune responses. In addition, immunity induced by a booster dose of CoronaVac is active against VOCs, suggesting adequate protection. IMPORTANCE CoronaVac is an inactivated vaccine against SARS-CoV-2 that has been approved by WHO for emergency use. Phase III clinical trials are in progress in several countries, including China, Brazil, Turkey, and Chile, and have shown safety and immunogenicity after two doses of the vaccine. This report characterizes immune responses induced by two doses of CoronaVac followed by a booster dose 5 months after the second dose in healthy Chilean adults. The data reported here show that a booster dose increased the immune responses against SARS-CoV-2, enhancing levels of neutralizing antibodies against the ancestral strain and VOCs. Similarly, anti-SARS-CoV-2 CD4(+) T cell responses were increased following the booster dose. In contrast, levels of gamma interferon secretion and T cell activation against the VOCs Delta and Omicron were not significantly different from those for the ancestral strain. Therefore, a third dose of CoronaVac in a homologous vaccination schedule improves its immunogenicity in healthy volunteers.
- ItemCharacterization of the humoral and cellular immunity induced by a recombinant BCG vaccine for the respiratory syncytial virus in healthy adults(2023) Pacheco, Gaspar A.; Andrade, Catalina A.; Galvez, Nicolas M. S.; Vazquez, Yaneisi; Rodriguez-Guilarte, Linmar; Abarca, Katia; Gonzalez, Pablo A.; Bueno, Susan M.; Kalergis, Alexis M.IntroductionThe human respiratory syncytial virus (hRSV) is responsible for most respiratory tract infections in infants. Even though currently there are no approved hRSV vaccines for newborns or infants, several candidates are being developed. rBCG-N-hRSV is a vaccine candidate previously shown to be safe in a phase I clinical trial in adults (clinicaltrials.gov identifier #NCT03213405). Here, secondary immunogenicity analyses were performed on these samples. MethodsPBMCs isolated from immunized volunteers were stimulated with hRSV or mycobacterial antigens to evaluate cytokines and cytotoxic T cell-derived molecules and the expansion of memory T cell subsets. Complement C1q binding and IgG subclass composition of serum antibodies were assessed. ResultsCompared to levels detected prior to vaccination, perforin-, granzyme B-, and IFN-& gamma;-producing PBMCs responding to stimulus increased after immunization, along with their effector memory response. N-hRSV- and mycobacterial-specific antibodies from rBCG-N-hRSV-immunized subjects bound C1q. ConclusionImmunization with rBCG-N-hRSV induces cellular and humoral immune responses, supporting that rBCG-N-hRSV is immunogenic and safe in healthy individuals.
- ItemDifferences in the immune response elicited by two immunization schedules with an inactivated SARS-CoV-2 vaccine in a randomized phase 3 clinical trial(2022) Galvez, Nicolas M. S.; Pacheco, Gaspar A.; Schultz, Barbara M.; Melo-Gonzalez, Felipe; Soto, Jorge A.; Duarte, Luisa F.; Gonzalez, Liliana A.; Rivera-Perez, Daniela; Rios, Mariana; Berrios, Roslye, V; Vazquez, Yaneisi; Moreno-Tapia, Daniela; Vallejos, Omar P.; Andrade, Catalina A.; Hoppe-Elsholz, Guillermo; Iturriaga, Carolina; Urzua, Marcela; Navarrete, Maria S.; Rojas, Alvaro; Fasce, Rodrigo; Fernandez, Jorge; Mora, Judith; Ramirez, Eugenio; Gaete-Argel, Aracelly; Acevedo, Monica L.; Valiente-Echeverria, Fernando; Soto-Rifo, Ricardo; Weiskopf, Daniela; Grifoni, Alba; Sette, Alessandro; Zeng, Gang; Meng, Weining; Gonzalez-Aramundiz, Jose, V; Johnson, Marina; Goldblatt, David; Gonzalez, Pablo A.; Abarca, Katia; Bueno, Susan M.; Kalergis, Alexis M.Background: The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged & GE;18 years. Volunteers received two doses of CoronaVac separated by 2 (0-14 schedule) or 4 weeks (0-28 schedule); 2302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. Results: Both schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern (VOCs) between schedules. Stimulation of peripheral blood mononuclear cells (PBMCs) with Mega pools of Peptides (MPs) induced the secretion of interferon (IFN)-gamma and the expression of activation induced markers in CD4(+) T cells for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-gamma secretion. Conclusions: Immunization with CoronaVac in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule.
- ItemEvaluation of monoclonal antibodies that detect conserved proteins from Respiratory Syncytial Virus, Metapneumovirus and Adenovirus in human samples(2018) González Carreño, Liliana Andrea; Vazquez, Yaneisi; Mora, Jorge E.; Palavecino, Christian E.; Bertrand N., Pablo; Ferrés Garrido, Marcela Viviana; Contreras, Ana María; Beckhaus, Andrea A.; Riedel, Claudia; Bueno Ramírez, Susan
- ItemIdentification of biomarkers for disease severity in nasopharyngeal secretions of infants with upper or lower respiratory tract viral infectionsBertrand N., Pablo; Vazquez, Yaneisi; Beckhaus, Andrea A.; González Carreño, Liliana Andrea; Contreras Sepúlveda, Ana María; Ferrés Garrido, Marcela Viviana; Padilla Pérez, Oslando; Riedel, Claudia A.; Kalergis Parra, Alexis Mikes; Bueno, Susan M.Lower respiratory tract infections (LRTIs) produced by viruses are the most frequent cause of morbidity and mortality in children younger than 5 years of age. The immune response triggered by viral infection can induce a strong inflammation in the airways and cytokines could be considered as biomarkers for disease severity as these molecules modulate the inflammatory response that defines the outcome of patients. Aiming to predict the severity of disease during respiratory tract infections, we conducted a 1-year follow-up observational study in infants who presented upper or lower respiratory tract infections caused by seasonal respiratory viruses. At the time of enrollment, nasopharyngeal swabs (NPS) were obtained from infants to measure mRNA expression and protein levels of IL-3, IL-8, IL-33, and thymic stromal lymphopoietin. While all cytokines significantly increased their protein levels in infants with upper and lower respiratory tract infections as compared to control infants, IL-33 and IL-8 showed a significant increase in respiratory syncytial virus (RSV)-infected patients with LRTI as compared to patients with upper respiratory tract infection. We also found higher viral loads of RSV-positive samples with a greater IL-8 response at the beginning of the symptoms. Data obtained in this study suggest that both IL-8 and IL-33 could be used as biomarkers for clinical severity for infants suffering from LRTIs caused by the RSV.
- ItemInterleukin-10 Produced by Myeloid-Derived Suppressor Cells Provides Protection to Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 258 by Enhancing Its Clearance in the Airways(2019) Peñaloza Cerda, Hernán F.; Noguera Mijares, Loreani Paola; Ahn, D.; Vallejos, Omar; Castellanos, Raquel M.; Vazquez, Yaneisi; Salazar Echegarai, Francisco Javier; González Carreño, Liliana; Suazo Gálvez, Isidora del Carmen; Pardo Roa, Catalina; Salazar, Geraldyne; Prince, Alice; Bueno Ramírez, SusanCarbapenem-resistant Klebsiella pneumoniae sequence type 258 (CRKP-ST258) can cause chronic infections in lungs and airways, with repeated episodes of bacteremia. In this report we addressed whether the recruitment of myeloid cells producing the anti-inflammatory cytokine interleukin-10 (IL-10) modulates the clearance of CKRP-ST258 in the lungs and establishes bacterial persistence. Our data demonstrate that during pneumonia caused by a clinical isolate of CRKP-ST258 (KP35) there is an early recruitment of monocyte-myeloid-derived suppressor cells (M-MDSCs) and neutrophils that actively produce IL-10. However, M-MDSCs were the cells that sustained the production of IL-10 over the time of infection evaluated. Using mice unable to produce IL-10 (IL-10-/-), we observed that the production of this cytokine during the infection caused by KP35 is important to control bacterial burden, to prevent lung damage, to modulate cytokine production, and to improve host survival. Importantly, intranasal transfer of bone marrow-derived M-MDSCs from mice able to produce IL-10 at 1 day prior to infection improved the ability of IL-10-/- mice to clear KP35 in the lungs, decreasing their mortality. Altogether, our data demonstrate that IL-10 produced by M-MDSCs is required for bacterial clearance, reduction of lung tissue damage, and host survival during KP35 pneumonia.