Browsing by Author "Vergara-Barros, Pablo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAntarctic Lichens under Long-Term Passive Warming: Species-Specific Photochemical Responses to Desiccation and Heat Shock Treatments(2022) Marin, Catalina; Bartak, Milos; Palfner, Gotz; Vergara-Barros, Pablo; Fernandoy, Francisco; Hajek, Josef; Casanova-Katny, AngelicaClimate warming in the Antarctic tundra will affect locally dominant cryptogams. Being adapted to low temperatures and freezing, little is known about the response of the polar lichens' primary photochemistry to warming and desiccation. Since 2008, we have monitored the ecophysiological responses of lichens to the future warming scenario during a long-term warming experiment through open top chambers (OTCs) on Fildes Peninsula. We studied the primary photochemical response (potential Fv/Fm and effective efficiency of photosystem II YPSII) of different lichen taxa and morphotypes under desiccation kinetics and heat shock experiments. As lichens grow slowly, to observe changes during warming we methodologically focused on carbon and nitrogen content as well as on the stable isotope ratios. Endemic Himantormia lugubris showed the strongest effect of long-term warming on primary photochemistry, where PSII activity occurred at a lower %RWC inside the OTCs, in addition to higher Fv/Fm values at 30 degrees C in the heat shock kinetic treatment. In contrast, Usnea aurantiaco-atra did not show any effect of long-term warming but was active at a thallus RWC lower than 10%. Both Cladonia species were most affected by water stress, with Cladonia aff. gracilis showing no significant differences in primary photochemical responses between the warming and the control but a high sensibility to water deficiency, where, at 60% thallus RWC, the photochemical parameters began to decrease. We detected species-specific responses not only to long-term warming, but also to desiccation. On the other hand, the carbon content did not vary significantly among the species or because of the passive warming treatment. Similarly, the nitrogen content showed non-significant variation; however, the C/N ratio was affected, with the strongest C/N decrease in Cladonia borealis. Our results suggest that Antarctic lichens can tolerate warming and high temperature better than desiccation and that climate change may affect these species if it is associated with a decrease in water availability.
- ItemCoastal Bacterial Community Response to Glacier Melting in the Western Antarctic Peninsula(2021) Alcaman-Arias, Maria Estrella; Fuentes-Alburquenque, Sebastian; Vergara-Barros, Pablo; Cifuentes-Anticevic, Jeronimo; Verdugo, Josefa; Polz, Martin; Farias, Laura; Pedros-Alio, Carlos; Diez, BeatrizCurrent warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as Polaribacter, Pseudoalteromonas and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as Flavobacterium and Polaromonas, tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.
- ItemCompensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain(2022) Vergara-Barros, Pablo; Alcorta Loyola, Jaime Andrés; Casanova-Katny, Angélica; Nürnberg, Dennis J.; Díez, BeatrizKey organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.
- ItemFischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria(2019) Alcorta Loyola, Jaime Andrés; Vergara-Barros, Pablo; Antonaru, Laura A.; Alcamán-Arias, María E.; Nürnberg, Dennis J.; Díez, BeatrizThe true-branching cyanobacterium Fischerella thermalis (also known as Mastigocladus laminosus) is widely distributed in hot springs around the world. Morphologically, it has been described as early as 1837. However, its taxonomic placement remains controversial. F. thermalis belongs to the same genus as mesophilic Fischerella species but forms a monophyletic clade of thermophilic Fischerella strains and sequences from hot springs. Their recent divergence from freshwater or soil true-branching species and the ongoing process of specialization inside the thermal gradient make them an interesting evolutionary model to study. F. thermalis is one of the most complex prokaryotes. It forms a cellular network in which the main trichome and branches exchange metabolites and regulators via septal junctions. This species can adapt to a variety of environmental conditions, with its photosynthetic apparatus remaining active in a temperature range from 15 to 58 °C. Together with its nitrogen-fixing ability, this allows it to dominate in hot spring microbial mats and contribute significantly to the de novo carbon and nitrogen input. Here, we review the current knowledge on the taxonomy and distribution of F. thermalis, its morphological complexity, and its physiological adaptations to an extreme environment.