Browsing by Author "Vicuna, Sebastian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAgriculture Vulnerability to Climate Change in a Snowmelt-Driven Basin in Semiarid Chile(ASCE-AMER SOC CIVIL ENGINEERS, 2012) Vicuna, Sebastian; McPhee, James; Garreaud, Rene D.The Limari River basin is one of the most important watersheds in north-central Chile (30 S). Its headwaters lie at the top of the subtropical Andes (> 5; 000 m above sea level) and the river flows westward into the Pacific Ocean over a length of approximately 200 km. This basin has a marked snowmelt-driven hydrological regime and, in spite of the arid conditions that characterize this region, holds more than 50,000 ha of highly productive agricultural land thanks to its irrigation infrastructure and three interconnected reservoirs. Like many semiarid regions around the world, north-central Chile is expected to become warmer and drier during the 21st century as a consequence of ongoing anthropogenic climate change. The associated reduction in streamflow, changes in hydrograph timing, and enhanced evapotranspiration will undoubtedly threaten agriculture in the Limari basin and elsewhere in semiarid Chile. In this paper, the effect of temperature and precipitation on surface hydrology, performance of water infrastructure, and irrigation coverage in the Limari basin is investigated by using the water evaluation and planning (WEAP) model. WEAP was calibrated by using current climate and agriculture patterns, and then forced with a set of 30-year-long climate scenarios, each of them obtained by adding a temperature and precipitation perturbation to the historical time series. This delta approach allows (1) determination of the sensitivity of selected variables to climate change, and (2) obtaining a projection of the effects in irrigation coverage expected for the near and far future (2010-2040 and 2070-2100, respectively). Both aspects are investigated for agricultural districts with varying access to irrigation infrastructure and groundwater; this exercise highlights the relevance of added storage and innovative conjunctive use of surface and groundwater resources for improving the resilience and adaptability of irrigated agriculture in the face of a changing climate. DOI: 10.1061/(ASCE)WR.1943-5452.0000202. (C) 2012 American Society of Civil Engineers.
- ItemBasin-scale water system operations with uncertain future climate conditions: Methodology and case studies(AMER GEOPHYSICAL UNION, 2010) Vicuna, Sebastian; Dracup, John A.; Lund, Jay R.; Dale, Larry L.; Maurer, Edwin P.The old and useful paradigm used by water resource engineers, that hydrology in a given place is stationary, and hence it is sufficient to look into the past to plan for the future, does not hold anymore, according to climate change projections. This becomes especially true in snow-dominated regions like California, where not only the magnitude but also the timing of streamflow could be affected by changes in precipitation and temperature. To plan and operate water resources systems at the basin scale, it is necessary to develop new tools that are suited for this nonstationary world. In this paper we develop an optimization algorithm that can be used for different studies related to climate change and water resources management. Three applications of this algorithm are developed for the Merced River basin. The first of these gives an assessment of the climate change effects on the operations of this basin considering an adaptive management strategy embedded in the optimization algorithm. In a second application we explore different long-term adaptation strategies intended to mitigate the effects of climate change. A final application is developed to determine how beneficial it is to build a new reservoir considering explicitly the uncertainty about future climate projections.
- ItemIrrigation of green spaces and residential gardens in a Mediterranean metropolis : Gaps and opportunities for climate change adaptation(2019) Reyes Paecke, Sonia; Gironás León, Jorge Alfredo; Melo Contreras, Óscar; Vicuna, Sebastian; Herrera, Josefina; CEDEUS (Chile)