Browsing by Author "Wang, Jie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemSDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies(OXFORD UNIV PRESS, 2018) Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernandez Trincado, J. G.; Valenzuela, Octavio; Aquino Ortiz, ErikWe study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1 sigma significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.
- ItemThe formation and evolution of massive galaxies(2021) Jing, Ying-Jie; Rong, Yu; Wang, Jie; Guo, Qi; Gao, LiangThe discovery of massive galaxies at high redshifts, especially the passive ones, poses a big challenge for the current standard galaxy formation models. Here we use the semi-analytic galaxy formation model developed by Henriques et al. to explore the formation and evolution of massive galaxies (MGs, stellar-mass M-* > 10(11) M-circle dot). Different from previous works, we focus on the ones just formed (e.g. just reach similar or equal to 10(11) M-circle dot). We find that most of the MGs are formed around z = 0.6, with the earliest formation at z > 4. Interestingly, although most of the MGs in the local Universe are passive, we find that only 13% of the MGs are quenched at the formation time. Most of the quenched MGs at formation already host a very massive supermassive black hole (SMBH) which could power the very effective AGN feedback. For the star-forming MGs, the ones with more massive SMBH prefer to quench in shorter timescales; in particular, those with M-SMBH > 10(7.5) M-circle dot have a quenching timescale of similar to 0.5 Gyr and the characteristic M-SMBH depends on the chosen stellar mass threshold in the definition of MGs as a result of their co-evolution. We also find that the "in-situ" star formation dominates the stellar mass growth of MGs until they are formed. Over the whole redshift range, we find the quiescent MGs prefer to stay in more massive dark matter halos, and have more massive SMBH and less cold gas masses. Our results provide a new angle on the whole life of the growth of MGs in the Universe.