Browsing by Author "Winckler, Patricio"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAssessing the Role of Land-Use Planning in Near Future Climate-Driven Scenarios in Chilean Coastal Cities(2023) León, Jorge; Winckler, Patricio; Vicuña del Río, María Magdalena; Guzmán Pincheira, Simón Andrés; Larraguibel, CristianThis study reviews the degree to which land-use planning addresses climate change adaptation in Chilean Low Elevated Coastal Zones (LECZ). We first select 12 of the country’s most exposed coastal municipalities using a Municipal Exposure Index (MEI). Then, we conduct a content analysis of the communal regulatory plans (CRPs) using a “presumed exposure analysis”, which assumes that the inventory of assets within LECZ, according to the 2017 census, is a proxy of the exposure. Then, we conduct a more refined “hazard exposure analysis” by comparing changes in flooding levels between a historical period (1985–2004) and the RCP8.5 scenario (2026–2045). Using the latter approach, we show that flooding could affect large portions of the municipalities’ housing areas (3.7%), critical facilities (14.6%), and wetlands (22.7%) in the period 2026–2045. In the presumed exposure analysis, these percentages rise to 7.5%, 23.9%, and 24.9%, respectively. We find that CRPs also allow for a densification of exposed residential areas, whose density would increase by 9.2 times, on average, between the historical period and the RCP8.5 scenario. Additionally, only four municipalities define floodable zones as “risk areas”. Lastly, the difficulty in updating CRPs and their antiquity −21.25 years old on average could explain their ineffectiveness in implementing climate change adaptation strategies.
- ItemCoastal erosion in central Chile: a new hazard?(2018) Martínez Reyes, Carolina del Pilar; Contreras-Lopez, Manuel; Winckler, Patricio; Hidalgo, Hector; Godoy, Eduardo; Agredano, Roberto
- ItemDesalinización: oportunidades y desafíos para abordar la inseguridad hídrica en chile(Ministerio de Ciencia, Tecnología, Conocimiento e Innovación, 2022) Vicuña, Sebastián; Daniele, Linda; Farías, Laura; González, Humberto; Marquet, Pablo A.; Palma Behnke, Rodrigo; Stehr, Alejandra; Urquiza, Anahí; Wagemann, Elizabeth; Arenas Herrera, María J.; Bórquez, Rodrigo; Cornejo Ponce, Lorena; Delgado, Verónica; Etcheberry, Gabriel; Fragkou, María Christina; Fuster, Rodrigo; Gelcich, Stefan; Melo, Óscar; Monsalve, Tamara; Olivares, Marcelo; Ramajo, Laura; Ramírez Pascualli, Carlos; Rojas, Carolina; Rojas, Christian; Vilca Salinas, Patricia; Winckler, Patricio; Winckler, Patricio; Lambert, Fabrice
- ItemField Survey of the 27 February 2010 Chile Tsunami(2011) Fritz, Hermann M.; Petroff, Catherine M.; Catalán, Patricio A.; Cienfuegos Carrasco, Rodrigo Alberto; Winckler, Patricio; Kalligeris, Nikos; Weiss, Robert; Barrientos, Sergio E.; Meneses, Gianina; Valderas-Bermejo, Carolina; Ebeling, Carl; Papadopoulos, Athanassios; Contreras, Manuel; Almar, Rafael; Domínguez, Juan C.; Synolakis, Costas E.On 27 February 2010, a magnitude M-w = 8.8 earthquake occurred off the coast of Chile's Maule region causing substantial damage and loss of life. Ancestral tsunami knowledge from the 1960 event combined with education and evacuation exercises prompted most coastal residents to spontaneously evacuate after the earthquake. Many of the tsunami victims were tourists in coastal campgrounds. The international tsunami survey team (ITST) was deployed within days of the event and surveyed 800 km of coastline from Quintero to Mehuin and the Pacific Islands of Santa Maria, Mocha, Juan Fernandez Archipelago, and Rapa Nui (Easter). The collected survey data include more than 400 tsunami flow depth, runup and coastal uplift measurements. The tsunami peaked with a localized runup of 29 m on a coastal bluff at Constitucion. The observed runup distributions exhibit significant variations on local and regional scales. Observations from the 2010 and 1960 Chile tsunamis are compared.
- ItemImpacts in ports on a tectonically active coast for climate-driven projections under the RCP 8.5 scenario: 7 Chilean ports under scrutiny(2022) Winckler, Patricio; Esparza Acuña, César Antonio; Mora, Javiera; Melo Contreras, Óscar; Bambach, Nicolás; Contreras López, Manuel; Sactic, María IsabelEconomic costs due to operational downtime and wave overtopping under the RCP 8.5 scenario are evaluated at 7 Chilean ports. Wave statistics for a historical period (1985–2004), mid-century (2026–2045), and end-of-century projections (2081–2100) are computed with a Pacific-wide model, forced by wind fields from six General Circulation Models. Offshore waves are then downscaled to each port, where a proxy of downtime is computed by comparing wave heights with vessel berthing criteria. The difference in downtime between the historical and future projections is attributed to climate change. Results show that some ports would reduce and others increase downtime for mid-century projections due to local effects. However, by the end-of-century, all ports would experience a reduction in downtime. Additionally, by mid-century, overtopping would increase in northern ports as a combination of extreme waves and sea-level rise (SLR), while in southern ports, it is expected to be slightly reduced. By the end-of century, overtopping would increase in the whole region, mainly driven by SLR. However, overtopping is significantly altered by coseismic uplift/subsidence that may occur during the design-life of coastal works. Finally, a few practical suggestions aimed atimproving infrastructure management and operational conditions at the analyzed ports are outlined.
- ItemObservations and Modeling of the 27 February 2010 Tsunami in Chile(ASCE Library, 2011) Fritz, Hermann M.; Synolakis, Costas E.; Petroff, Catherine M.; Catalán, Patricio A.; Cienfuegos Carrasco, Rodrigo Alberto; Winckler, Patricio; Kalligeris, Nikos; Weiss, Robert; Meneses, Gianina; Valderas-Bermejo, Carolina; Ebeling, Carl; Papadopoulos, Athanassios; Contreras, Manuel; Almar, Rafael; Domínguez, Juan C.; Barrientos, Sergio E.On February 27, 2010, a magnitude Mw = 8.8 earthquake occurred off the coast of Chile's Maule region causing substantial damage and loss of life. Ancestral tsunami knowledge from the 1960 event combined with education and evacuation exercises prompted most coastal residents to spontaneously evacuate after the earthquake. Many of the tsunami victims were tourists in coastal campgrounds. The international tsunami survey team (ITST) was deployed within days of the event and surveyed 800 km of coastline from Quintero to Mehuín and the Pacific Islands of Santa María, Mocha, Juan Fernández Archipelago, and Rapa Nui (Easter). The collected survey data include more than 400 tsunami flow depth, runup and coastal uplift measurements. The tsunami peaked with a localized runup of 29 m on a coastal bluff at Constitución. The observed runup distributions exhibit significant variations on local and regional scales.
- ItemProjections of Beach Erosion and Associated Costs in Chile(2023) Winckler, Patricio; Agredano Martín, Roberto; Esparza Acuña, César Antonio; Melo Contreras, Óscar; Sactic, María Isabel; Martínez, CarolinaEconomic costs associated to coastal erosion are projected in 45 sandy beaches in Chilean coasts. We compare mid-century (2026–2045) and end-of-century projections (2081–2100) of wave climate and sea-level rise (SLR) with a historical period (1985–2004) using several General Circulation Models for the RCP 8.5 scenario. Offshore wave data are then downscaled to each site, where shoreline retreat is assessed with Bruun rule for various berm heights and sediment diameters. Results indicate that mid-century retreat would be moderate (>13 m) while larger end-of-century projections (>53 m) are explained by SLR (0.58 ± 0.25 m). A small counterclockwise rotation of long beaches is also expected. To assess the costs of shoreline retreat, we use the benefit transfer methodology by using adjusted values from a previous study to the sites of interest. Results show that, by mid-century, beach width reduction would be between 2.0% and 68.2%, implying a total annual loss of USD 5.6 [5.1–6.1] million. For end-the-century projections, beach width reduction is more significant (8.4–100%), involving a total annual loss of USD 10.5 [8.1–11.8] million. Additionally, by the end-of-century, 13–25 beaches could disappear. These costs should be reduced with coastal management practices which are nevertheless inexistent in the country.