Browsing by Author "Yutronic, Nicolas"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemFormation of Copper Nanoparticles Supported onto Inclusion Compounds of alpha-cyclodextrin: A New Route to Obtain Copper Nanoparticles(2010) Silva, Nataly; Moris, Silvana; Herrera Pisani, Bárbara Andrea; Diaz, Maximiliano; Kogan, Marcelo J.; Barrientos, Lorena; Yutronic, Nicolas; Jara, Paul
- ItemFunctionalization of Gold Nanostars with Cationic β-Cyclodextrin-Based Polymer for Drug Co-Loading and SERS Monitoring(2021) Donoso-Gonzalez, Orlando; Lodeiro, Lucas; Aliaga, Alvaro E.; Laguna-Bercero, Miguel A.; Bollo, Soledad; Kogan, Marcelo J.; Yutronic, Nicolas; Sierpe, RodrigoGold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic beta-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV-VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 +/- 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.
- ItemOptimizing Dacarbazine Therapy: Design of a Laser-Triggered Delivery System Based on β-Cyclodextrin and Plasmonic Gold Nanoparticles(2023) Quintana-Contardo, Sebastian; Donoso-Gonzalez, Orlando; Lang, Erika; Guerrero, Ariel R. R.; Noyong, Michael; Simon, Ulrich; Kogan, Marcelo J. J.; Yutronic, Nicolas; Sierpe, RodrigoDacarbazine (DB) is an antineoplastic drug extensively used in cancer therapy. However, present limitations on its performance are related to its low solubility, instability, and non-specificity. To overcome these drawbacks, DB was included in beta-cyclodextrin (beta CD), which increased its aqueous solubility and stability. This new beta CD@DB complex has been associated with plasmonic gold nanoparticles (AuNPs), and polyethylene glycol (PEG) has been added in the process to increase the colloidal stability and biocompatibility. Different techniques revealed that DB allows for a dynamic inclusion into beta CD, with an association constant of 80 M-1 and a degree of solubilization of 0.023, where beta CD showed a loading capacity of 16%. The partial exposure of the NH2 group in the included DB allows its interaction with AuNPs, with a loading efficiency of 99%. The PEG-AuNPs-beta CD@DB nanosystem exhibits an optical plasmonic absorption at 525 nm, a surface charge of -29 mV, and an average size of 12 nm. Finally, laser irradiation assays showed that DB can be released from this platform in a controlled manner over time, reaching a concentration of 56 mu g/mL (43% of the initially loaded amount), which, added to the previous data, validates its potential for drug delivery applications. Therefore, the novel nanosystem based on beta CD, AuNPs, and PEG is a promising candidate as a new nanocarrier for DB.