Browsing by Author "de Juan, Silvia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemIntegration of biophysical connectivity in the spatial optimization of coastal ecosystem services(ELSEVIER, 2020) Ospina Alvarez, Andres; de Juan, Silvia; Davis, Katrina J.; Gonzalez, Catherine; Fernandez, Miriam; Navarrete, Sergio A.Ecological connectivity in coastal oceanic waters is mediated by dispersion of the early life stages of marine organisms and conditions the structure of biological communities and the provision of ecosystem services. Integrated management strategies aimed at ensuring long-term service provision to society do not currently consider the importance of dispersal and larval connectivity. A spatial optimization model is introduced to maximise the potential provision of ecosystem services in coastal areas by accounting for the role of dispersal and larval connectivity. The approach combines a validated coastal circulation model that reproduces realistic patterns of larval transport along the coast, which ultimately conditions the biological connectivity and productivity of an area, with additional spatial layers describing potential ecosystem services. The spatial optimization exercise was tested along the coast of Central Chile, a highly productive area dominated by the Humboldt Current. Results show it is unnecessary to relocate existing management areas, as increasing no-take areas by 10% could maximise ecosystem service provision, while improving the spatial representativeness of protected areas and minimizing social conflicts. The location of protected areas was underrepresented in some sections of the study domain. principally due to the restriction of the model to rocky subtidal habitats. Future model developments should encompass the diversity of coastal ecosystems and human activities to inform integrative spatial management. Nevertheless, the spatial optimization model is innovative not only for its integrated ecosystem perspective, but also because it demonstrates that it is possible to incorporate time-varying biophysical connectivity within the optimization problem, thereby linking the dynamics of exploited populations produced by the spatial management regime. (C) 2020 Elsevier B.V. All rights reserved.
- ItemMultidimensional data analysis to guide the sustainability of a small-scale fishery affected by poaching(2022) de Juan, Silvia; Subida, Maria Dulce; Ospina-Alvarez, Andres; Aguilar, Ainara; Fernandez, MiriamThe substantial increase in poaching within the fisheries' management areas (MA) system in central Chile is likely driven by an interplay of socio-economic factors. To assess this problem, the exploitation state of an important benthic resource in the MAs (i.e., keyhole limpet) was related to socio-economic drivers of the fishery. The potential drivers of poaching included the level of formal and informal enforcement and distance to sur-veillance authorities, a rebound effect of fishing effort displacement by MAs, wave exposure and land-based access to the MA, and alternative economic activities in the fishing village. A Bayesian-Belief Network approach was adopted to assess the effects of potential drivers of poaching on the exploitation state of limpets, assessed by the proportion of the catch that is below the minimum legal size and by the relative median size of limpets fished within the MAs in comparison with neighboring open access areas. Results showed the important role of socio-economic (e.g., alternative economic activities in the village) and context variables (e.g., fishing effort displacement or distance to surveillance authorities) as drivers of poaching in the study area. Scenario analysis explored variables that are susceptible to be managed, evidencing that an integrative ecological and socio-economic approach can offer solutions to the unsustainable exploitation of marine resources.