Novel pillar-layered metal organic frameworks based on pyrazole-carboxylate linkers for CO2 adsorption

Loading...
Thumbnail Image
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
With an increasing global population and energy requirement, the concentration of greenhouse gases, especially CO2, grows rapidly in the atmosphere. One of the solutions to mitigate this problem is to develop materials that can effectively capture and store CO2. The conventional method relies on using amine solvents to bind to CO2 chemically, but it is still not widely accepted because of the price of its regeneration. Porous solid materials such as Metal-Organic Frameworks (MOFs) have been suggested as CO2 adsorbents due to their-well defined molecular scale porosity, crystallinity, synthetic tunability, and high CO2 uptake capacity and selectivity. This Chemistry Ph.D. project first synthesized and characterized three novel carboxylate-pyrazole linkers (Ap, Bp, and Cp). Those linkers allowed the synthesis of novel MOFs using Zn(II)/Cu(II) metal nodes and 4,4’-bipyridine/DABCO pillaring linkers. Five MOFs were obtained, three from the Ap linker, one from Bp, and one from Cp. The carboxylate groups and pyridyl nitrogens are engaged in coordination bond formation with the metal node that propagates in generating 3D porous structures, and the pyrazole nitrogens remain free to interact with CO2. All the materials have shown excellent structural stability and crystallinity. The CO2 uptake was between 3.4-7.20% wt% at 273 K and 75 kPa. For Ap MOFs, changing the metal node from Zn(II) to Cu (II) and replacing the pillaring linker from 4,4’-bipyridine to DABCO makes it possible to increase CO2 adsorption. The isosteric enthalpy of adsorption (Hads) of CO2 adsorption for all of them was between 23-40 kJ/mol, making it more cost-effective for the MOF’s regeneration after CO2 storage. All five MOFs are good candidates for CO2 adsorption because of their stability, capture capabilities, and energy required for CO2 adsorption and regeneration.
Description
Tesis (Degree of Doctor of Chemistry)--Pontificia Universidad Católica de Chile, 2023
Keywords
Citation