Browsing by Author "Lisbona, Fernanda"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response(2011) Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamin; Nassif, Melissa; Court, Felipe A.; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, ClaudioBoth autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 alpha (IRE1 alpha). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1 alpha expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1 alpha. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes. The EMBO Journal (2011) 30, 4465-4478. doi:10.1038/emboj.2011.318; Published online 16 September 2011
- ItemTrkA receptor activation by nerve growth factor induces shedding of the p75 neurotrophin receptor followed by endosomal gamma-secretase-mediated release of the p75 intracellular domain(AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2007) Urra, Soledad; Escudero, Claudia A.; Ramos, Patricio; Lisbona, Fernanda; Allende, Edgardo; Covarrubias, Paulina; Parraguez, Jose I.; Zampieri, Niccolo; Chao, Moses V.; Annaert, Wim; Bronfman, Francisca C.Neurotrophins are trophic factors that regulate important neuronal functions. They bind two unrelated receptors, the Trk family of receptor-tyrosine kinases and the p75 neurotrophin receptor (p75). p75 was recently identified as a new substrate for gamma-secretase-mediated intramembrane proteolysis, generating a p75-derived intracellular domain (p75-ICD) with signaling capabilities. Using PC12 cells as a model, we studied how neurotrophins activate p75 processing and where these events occur in the cell. We demonstrate that activation of the TrkA receptor upon binding of nerve growth factor (NGF) regulates the metalloprotease-mediated shedding of p75 leaving a membrane-bound p75 C-terminal fragment (p75-CTF). Using subcellular fractionation to isolate a highly purified endosomal fraction, we demonstrate that p75-CTF ends up in endosomes where gamma-secretase-mediated p75-CTF cleavage occurs, resulting in the release of a p75-ICD. Moreover, we show similar structural requirements for gamma-secretase processing of p75 and amyloid precursor protein-derived CTFs. Thus, NGF-induced endocytosis regulates both signaling and proteolytic processing of p75.