BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response
No Thumbnail Available
Date
2011
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 alpha (IRE1 alpha). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1 alpha expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1 alpha. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes. The EMBO Journal (2011) 30, 4465-4478. doi:10.1038/emboj.2011.318; Published online 16 September 2011
Description
Keywords
autophagy, bax inhibitor-1(B1-1), inositol requiring kinase 1 alpha (IRE1 alpha), jun-terminal kinase (JNK), microtubule-associated protein 1 light chain 3 (LC3)