Browsing by Author "Walter, Peter"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response(2011) Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamin; Nassif, Melissa; Court, Felipe A.; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, ClaudioBoth autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 alpha (IRE1 alpha). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1 alpha expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1 alpha. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes. The EMBO Journal (2011) 30, 4465-4478. doi:10.1038/emboj.2011.318; Published online 16 September 2011
- ItemGenotoxic stress triggers the activation of IRE1α-dependent RNA decay to modulate the DNA damage response(2020) Dufey, Estefanie; Bravo-San Pedro, Jose Manuel; Eggers, Cristian; Gonzalez-Quiroz, Matias; Urra, Hery; Sagredo, Alfredo, I; Sepulveda, Denisse; Pihan, Philippe; Carreras-Sureda, Amado; Hazari, Younis; Sagredo, Eduardo A.; Gutierrez, Daniela; Valls, Cristian; Papaioannou, Alexandra; Acosta-Alvear, Diego; Campos, Gisela; Domingos, Pedro M.; Pedeux, Remy; Chevet, Eric; Alvarez, Alejandra; Godoy, Patricio; Walter, Peter; Glavic, Alvaro; Kroemer, Guido; Hetz, ClaudioThe molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1 alpha under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1 alpha signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1 alpha -dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1 alpha endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1 alpha to catalyze RIDD. The protective role of IRE1 alpha under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis. IRE1 alpha plays a key role in the unfolded protein response (UPR) by promoting the unconventional splicing of the XBP1 and the selective cleavage of RNAs. Here the authors report that IRE1 alpha is activated upon the DNA damage response and selectively controls the stability of mRNAs to maintain genome integrity.