SIZE INCREMENTS DUE TO INTERINDIVIDUAL FUSIONS: HOW MUCH AND FOR HOW LONG?1

dc.contributor.authorSantelices, Bernabe
dc.contributor.authorAlvarado, Jorge L.
dc.contributor.authorFlores, Veronica
dc.date.accessioned2025-01-21T00:05:12Z
dc.date.available2025-01-21T00:05:12Z
dc.date.issued2010
dc.description.abstractSize increments following interindividual fusions appear as a general benefit for organisms, such as coalescing seaweeds and modular invertebrates, with the capacity to fuse with conspecifics. Using sporelings of the red algae Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira and Mazzaella laminarioides (Bory) Fredericq, we measured the growth patterns of sporelings built with different numbers of spores, and the magnitude and persistence of the size increments gained by fusions. Then we studied three morphological processes that could help explain the observed growth patterns. Results indicate that in these algae, coalescence is followed by immediate increase in total size of the coalesced individual and that the increment is proportional to the number of individuals fusing. However, the size increments in sporelings of both species do not last > 60 d. Increasing reductions of marginal meristematic cells and increasing abundance of necrotic cells in sporelings built with increasing numbers of initial spores are partial explanations for the above growth patterns. Since sporelings formed by many spores differentiate erect axes earlier and in larger quantities than sporelings formed by one or only a few spores, differentiation, emergence, and growth of erect axes appear as a more likely explanation for the slow radial growth of the multisporic sporelings. Erect axis differentiation involves significant morphological and physiological changes and a shift from radial to axial growth. It is concluded that the growth pattern exhibited by these macroalgae after fusion differs from equivalent processes described for other organisms with the capacity to fuse, such as modular invertebrates.
dc.fuente.origenWOS
dc.identifier.doi10.1111/j.1529-8817.2010.00864.x
dc.identifier.issn0022-3646
dc.identifier.urihttps://doi.org/10.1111/j.1529-8817.2010.00864.x
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/95538
dc.identifier.wosidWOS:000280646500009
dc.issue.numero4
dc.language.isoen
dc.pagina.final692
dc.pagina.inicio685
dc.revistaJournal of phycology
dc.rightsacceso restringido
dc.subjectaxis differentiation
dc.subjectcoalescence
dc.subjectGracilaria
dc.subjectgrowth after fusion
dc.subjectinterindividual fusions
dc.subjectmarginal meristem
dc.subjectMazzaella
dc.subject.ods13 Climate Action
dc.subject.ods14 Life Below Water
dc.subject.ods15 Life on Land
dc.subject.odspa13 Acción por el clima
dc.subject.odspa14 Vida submarina
dc.subject.odspa15 Vida de ecosistemas terrestres
dc.titleSIZE INCREMENTS DUE TO INTERINDIVIDUAL FUSIONS: HOW MUCH AND FOR HOW LONG?1
dc.typeartículo
dc.volumen46
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files