Evaluation Benchmarks for Spanish Sentence Representations
dc.catalogador | grr | |
dc.contributor.author | Araujo Vasquez, Vladimir Giovanny | |
dc.contributor.author | Carvallo, Andrés | |
dc.contributor.author | Soto A. | |
dc.contributor.author | Moens M.-F. | |
dc.contributor.author | Kundu S. | |
dc.contributor.author | Mercer R.E. | |
dc.contributor.author | Canete J. | |
dc.contributor.author | Bravo-Marquez F. | |
dc.contributor.author | Mendoza M. | |
dc.date.accessioned | 2024-05-28T20:02:34Z | |
dc.date.available | 2024-05-28T20:02:34Z | |
dc.date.issued | 2022 | |
dc.description.abstract | © European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0.Due to the success of pre-trained language models, versions of languages other than English have been released in recent years. This fact implies the need for resources to evaluate these models. In the case of Spanish, there are few ways to systematically assess the models' quality. In this paper, we narrow the gap by building two evaluation benchmarks. Inspired by previous work (Conneau and Kiela, 2018; Chen et al., 2019), we introduce Spanish SentEval and Spanish DiscoEval, aiming to assess the capabilities of stand-alone and discourse-aware sentence representations, respectively. Our benchmarks include considerable pre-existing and newly constructed datasets that address different tasks from various domains. In addition, we evaluate and analyze the most recent pre-trained Spanish language models to exhibit their capabilities and limitations. As an example, we discover that for the case of discourse evaluation tasks, mBERT, a language model trained on multiple languages, usually provides a richer latent representation than models trained only with documents in Spanish. We hope our contribution will motivate a fairer, more comparable, and less cumbersome way to evaluate future Spanish language models. | |
dc.description.funder | ANID FONDECYT | |
dc.description.funder | National Center for Artificial Intelligence CENIA | |
dc.description.funder | U-Inicia VID | |
dc.description.funder | ANID | |
dc.fechaingreso.objetodigital | 2024-05-28 | |
dc.format.extent | 11 páginas | |
dc.identifier.eisbn | 9791095546726 | |
dc.identifier.scopusid | SCOPUS_ID:85144404417 | |
dc.identifier.scopusid | SCOPUS_ID:2-s2.0-85144404417 | |
dc.identifier.uri | https://aclanthology.org/2022.lrec-1.648.pdf | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/85916 | |
dc.information.autoruc | Escuela de Ingeniería; Araujo Vasquez, Vladimir Giovanny; S/I; 1081563 | |
dc.language.iso | en | |
dc.nota.acceso | contenido completo | |
dc.pagina.final | 6034 | |
dc.pagina.inicio | 6024 | |
dc.publisher | European Language Resources Association (ELRA) | |
dc.relation.ispartof | 2022 Language Resources and Evaluation Conference, LREC 2022 | |
dc.revista | 2022 Language Resources and Evaluation Conference, LREC 2022 | |
dc.rights | acceso abierto | |
dc.subject | discourse evaluation | |
dc.subject | language models | |
dc.subject | representation learning | |
dc.subject | sentence evaluation | |
dc.title | Evaluation Benchmarks for Spanish Sentence Representations | |
dc.type | comunicación de congreso | |
sipa.codpersvinculados | 1081563 | |
sipa.trazabilidad | SCOPUS;02-03-2023 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2022.lrec-1.648.pdf
- Size:
- 410.16 KB
- Format:
- Adobe Portable Document Format
- Description: