A Neural Network for Fast Modeling of Elastohydrodynamic Line Contacts
dc.catalogador | pva | |
dc.contributor.author | Kelley, Josephine | |
dc.contributor.author | Schneider, Volker | |
dc.contributor.author | Marian, Max | |
dc.contributor.author | Poll, Gerhard | |
dc.date.accessioned | 2025-03-05T20:25:39Z | |
dc.date.available | 2025-03-05T20:25:39Z | |
dc.date.issued | 2024 | |
dc.description.abstract | When modeling bearings in the context of entire transmissions or drivetrains, there are practical limits to the calculation resources available to calculate single bearings or even contacts. In settings such as these, curve-fitting methods have historically been deployed to estimate the elastohydrodynamic lubrication conditions. Machine learning methods have the potential to enable more sophisticated physical modeling in the context of larger computation environments, as the evaluation time of a trained model is typically negligible. We present a neural network that accurately evaluates the elastohydrodynamic film pressure and film thickness and explore its applications. Employing a neural network for the EHL film thickness calculations can enable a more physically precise modeling strategy at almost no additional computational cost. | |
dc.format.extent | 17 páginas | |
dc.fuente.origen | ORCID | |
dc.identifier.doi | 10.2139/ssrn.4823524 | |
dc.identifier.issn | 1556-5068 | |
dc.identifier.scopusid | SCOPUS_ID:2-s2.0-85192926871 | |
dc.identifier.uri | http://doi.org/10.2139/ssrn.4823524 | |
dc.identifier.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-85192926871&partnerID=MN8TOARS | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/102383 | |
dc.information.autoruc | Escuela de Ingeniería; Marian, Max; 0000-0003-2045-6649; 1247429 | |
dc.language.iso | en | |
dc.nota.acceso | contenido parcial | |
dc.publisher | SSRN | |
dc.rights | acceso restringido | |
dc.subject | Elastohydrodynamic lubrication | |
dc.subject | Neural networks | |
dc.subject | Rolling element bearing modeling | |
dc.subject.ddc | 620 | |
dc.subject.dewey | Ingeniería | es_ES |
dc.title | A Neural Network for Fast Modeling of Elastohydrodynamic Line Contacts | |
dc.type | preprint | |
sipa.codpersvinculados | 1247429 | |
sipa.trazabilidad | ORCID;2025-03-03 |