Comparison between poly(azomethine)s and poly(<i>p</i>-phenylvinylene)s containing a di-R-diphenylsilane (R = methyl or phenyl) moiety. Optical, electronic and thermal properties
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Two new silicon-containing poly(azomethine)s (PAzM-Me and PAzM-Ph) and two new silicon-containing poly(pphenylvinylene)s (PPVSi-Me and PPVSi-Ph) were obtained from 4',4'''-(dimethylsilanediyl)bis([1,1 '-biphenyl]-4-carbaldehyde) and 4',4'''-(diphenyl silanediyl)bis([1,1 '-biphenyl]-4-carbaldehyde) with p-phenylendiamine for PAzMs or phenylenebis(methylene))bis(triphenylphosphonium) bromide for PPVSis. All polymers were structurally characterized by FT-IR, NMR and elemental analysis. The materials showed a high thermal stability (501-538 degrees C) with the TPS-core increasing this parameter. The absorption and emission of PAzMs and PPVSis were closely related with the nature of the silane-core in the backbone. All samples showed wide-band gaps where the TPS-core-based materials evidenced the lower energy transitions; PAzM-Ph (2.83 eV) and PPVSi-Ph (2.81 eV). This work lay the groundwork for new architectures of silane-based poly(azomethine)s and poly(p- phenylvinylene)s derivatives for potential optoelectronic applications.
Description
Keywords
Oligo (azomethine), Oligo (p-phenylphenylene)s, Properties, Silylated materials