Multiphysics behavior of a magneto-rheological damper and experimental validation

dc.catalogadoryvc
dc.contributor.authorSternberg Cunchillos Alan Phillip
dc.contributor.authorZemp Rene
dc.contributor.authorDe La Llera Martin Juan Carlos
dc.contributor.otherPontificia Universidad Católica de Chile, National Research Center for Integrated Natural Disaster Management
dc.date.accessioned2020-10-02T01:25:36Z
dc.date.available2020-10-02T01:25:36Z
dc.date.issued2014
dc.description.abstractThis investigation deals with the design, manufacturing, and testing of a large-capacity MR damper prototype. The MR damper uses external coils that magnetize the MR-fluid as it moves out of the main cylinder through an external cylindrical gap. In its design, multi-physics numerical simulations are used to better understand its force-velocity constitutive behavior, and its eventual use in conjunction with tuned mass dampers for vibration reduction of high-rise buildings. Multi-physics finite element models are used to investigate the coupled magnetic and fluid-dynamic behavior of these dampers and thus facilitate the proof-of-concept testing of several new designs. In these models, the magnetic field and the dynamic behavior of the fluid are represented through the well-known Maxwell and Navier-Stokes equations. Both fields are coupled through the viscosity of the magneto-rheological fluid used, which in turn depends on the magnetic field strength. Some parameters of the numerical model are adjusted using cyclic and hybrid testing results on a 15 ton MR damper with internal coils. Numerical and experimental results for the 15 ton MR damper showed very good agreement, which supports the use of the proposed cascade magnetic-fluid model. The construction of the 97 ton MR damper involved several technical challenges, such as the use of a bimetallic cylinder for the external coils to confine the magnetic field within a predefined magnetic circuit. As it should be expected, test results of the manufactured MR damper show that the damping force increases with the applied current intensity. However, a larger discrepancy between the predicted and measured force in the large damper is observed, which is studied and discussed further herein. (C) 2014 Elsevier Ltd. All rights reserved.
dc.description.funderCONICYT/FONDAP/15110017
dc.fechaingreso.objetodigital2020-10-02
dc.format.extent12 páginas
dc.fuente.origenConveris
dc.identifier.doi10.1016/j.engstruct.2014.03.016
dc.identifier.issn0141-0296
dc.identifier.urihttps://doi.org/10.1016/j.engstruct.2014.03.016
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/46866
dc.information.autorucEscuela de Ingeniería; Sternberg Cunchillos Alan Phillip; S/I; 141074
dc.information.autorucEscuela de Ingeniería; Zemp Rene; S/I; 165664
dc.information.autorucEscuela de Ingeniería; De La Llera Martin Juan Carlos; 0000-0002-9064-0938; 53086
dc.language.isoen
dc.nota.accesoContenido parcial
dc.pagina.final205
dc.pagina.inicio194
dc.revistaEngineering Structureses_ES
dc.rightsacceso restringido
dc.rightsacceso restringido
dc.subjectMagneto-rheological damperes_ES
dc.subjectNumerical modeles_ES
dc.subjectMagneto-rheological fluides_ES
dc.subjectEnergy dissipation deviceses_ES
dc.subjectSemi-active damperses_ES
dc.subjectSeismic responsees_ES
dc.subjectHigh-rise buildingses_ES
dc.subject.ddc551.22
dc.subject.deweyIngenieríaes_ES
dc.titleMultiphysics behavior of a magneto-rheological damper and experimental validationes_ES
dc.typeartículo
dc.volumen69
sipa.codpersvinculados53086
sipa.codpersvinculados141074
sipa.codpersvinculados165664
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiphysics behavior of a magneto-rheological damper and experimental validation.pdf
Size:
59.75 KB
Format:
Adobe Portable Document Format
Description:
Abstract o primeros párrafos