Neuroevolutive Control of Industrial Processes Through Mapping Elites
dc.contributor.author | Langarica Chavira, Saúl Alberto | |
dc.contributor.author | Nuñez Retamal, Felipe Eduardo | |
dc.date.accessioned | 2022-05-18T14:04:50Z | |
dc.date.available | 2022-05-18T14:04:50Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Classical model-based control techniques used in process control applications present a tradeoff between performance and computational load, especially when using complex nonlinear methods. Learning-based techniques that allow the controller to learn policies from data represent an appealing alternative with potential to reduce the computational burden of real-time optimization. This article presents an efficient learning-based neural controller, optimized using evolutionary algorithms, designed especially for maintaining diversity of individuals. The search of solutions is conducted in the parameter space of a population of deep neural networks, which are efficiently encoded with a novel compression algorithm. Evaluation against strong baselines demonstrates that the proposed controller achieves better performance in most of the chosen evaluation metrics. Results suggest that learning-based controllers are a promising option for next-generation process control in the context of Industry 4.0. | |
dc.fuente.origen | IEEE | |
dc.identifier.doi | 10.1109/TII.2020.3019846 | |
dc.identifier.eissn | 1941-0050 | |
dc.identifier.issn | 1551-3203 | |
dc.identifier.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9178992 | |
dc.identifier.uri | https://doi.org/10.1109/TII.2020.3019846 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/64118 | |
dc.identifier.wosid | WOS:000622100800070 | |
dc.information.autoruc | Escuela de ingeniería ; Langarica Chavira, Saúl Alberto ; S/I ; 222832 | |
dc.information.autoruc | Escuela de ingeniería ; Nuñez Retamal, Felipe Eduardo ; S/I ; 131441 | |
dc.issue.numero | 5 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido parcial | |
dc.pagina.final | 3713 | |
dc.pagina.inicio | 3703 | |
dc.publisher | IEEE | |
dc.revista | IEEE Transactions on Industrial Informatics | |
dc.rights | acceso restringido | |
dc.subject | Process control | |
dc.subject | Sociology | |
dc.subject | Statistics | |
dc.subject | Optimization | |
dc.subject | Computational modeling | |
dc.subject | Approximation algorithms | |
dc.subject | Evolutionary computation | |
dc.title | Neuroevolutive Control of Industrial Processes Through Mapping Elites | es_ES |
dc.type | artículo | |
dc.volumen | 17 | |
sipa.codpersvinculados | 222832 | |
sipa.codpersvinculados | 131441 |