Families of explicit quasi-hyperbolic and hyperbolic surfaces

dc.contributor.authorGarcia-Fritz, Natalia
dc.contributor.authorUrzua, Giancarlo
dc.date.accessioned2025-01-23T19:57:10Z
dc.date.available2025-01-23T19:57:10Z
dc.date.issued2020
dc.description.abstractWe construct explicit families of quasi-hyperbolic and hyperbolic surfaces parametrized by quasi-projective bases. The method we develop in this paper extends earlier works of Vojta and the first author for smooth surfaces to the case of singular surfaces, through the use of ramification indices on exceptional divisors. The novelty of the method allows us to obtain new results for the surface of cuboids, the generalized surfaces of cuboids, and other explicit families of Diophantine surfaces of general type. In particular, we produce new families of smooth complete intersection surfaces of multidegrees m1, horizontal ellipsis. These families give evidence for [6, Conjecture 0.18] in the case of surfaces.
dc.fuente.origenWOS
dc.identifier.doi10.1007/s00209-019-02439-x
dc.identifier.eissn1432-1823
dc.identifier.issn0025-5874
dc.identifier.urihttps://doi.org/10.1007/s00209-019-02439-x
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100729
dc.identifier.wosidWOS:000500871900004
dc.issue.numero1-2
dc.language.isoen
dc.pagina.final593
dc.pagina.inicio573
dc.revistaMathematische zeitschrift
dc.rightsacceso restringido
dc.titleFamilies of explicit quasi-hyperbolic and hyperbolic surfaces
dc.typeartículo
dc.volumen296
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files