The Milky Way's bulge star formation history as constrained from its bimodal chemical abundance distribution

dc.contributor.authorLian, Jianhui
dc.contributor.authorZasowski, Gail
dc.contributor.authorHasselquist, Sten
dc.contributor.authorNataf, David M.
dc.contributor.authorThomas, Daniel
dc.contributor.authorBidin, Christian Moni
dc.contributor.authorFernandez-Trincado, Jose G.
dc.contributor.authorGarcia-Hernandez, D. A.
dc.contributor.authorLane, Richard R.
dc.contributor.authorMajewski, Steven R.
dc.contributor.authorRoman-Lopes, Alexandre
dc.contributor.authorSchultheis, Mathias
dc.date.accessioned2025-01-23T19:49:02Z
dc.date.available2025-01-23T19:49:02Z
dc.date.issued2020
dc.description.abstractWe conduct a quantitative analysis of the star formation history (SFH) of the Milky Way's (MW) bulge by exploiting the constraining power of its stellar [Fe/H] and [Mg/Fe] distribution functions. Using Apache Point Observatory Galactic Evolution Experiment survey data, we confirm the previously established bimodal [Mg/Fe]-[Fe/H] distribution within 3 kpc of the inner Galaxy. To fit the chemical bimodal distribution, we use a simple but flexible star formation framework, which assumes two distinct stages of gas accretion and star formation, and systematically evaluate a wide multidimensional parameter space. We find that the data favour a three-phase SFH that consists of an initial starburst, followed by a rapid star formation quenching episode, and a lengthy, quiescent secular evolution phase. The metal-poor, high-alpha bulge stars ([Fe/H] < 0.0 and [Mg/Fe] > 0.15) are formed rapidly (<2Gyr) during the early starburst. The density gap between the high- and low-alpha sequences is due to the quenching process. The metal-rich, low-a population ([Fe/H] > 0.0 and [Mg/Fe] < 0.15) then accumulates gradually through inefficient star formation during the secular phase. This is qualitatively consistent with the early SFH of the inner disc. Given this scenario, a notable fraction of young stars (age <5Gyr) is expected to persist in the bulge. Combined with extragalactic observations, these results suggest that a rapid star formation quenching process is responsible for bimodal distributions in both the MW's stellar populations and in the general galaxy population and thus plays a critical role in galaxy evolution.
dc.fuente.origenWOS
dc.identifier.doi10.1093/mnras/staa2205
dc.identifier.eissn1365-2966
dc.identifier.issn0035-8711
dc.identifier.urihttps://doi.org/10.1093/mnras/staa2205
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/100476
dc.identifier.wosidWOS:000577137200077
dc.issue.numero3
dc.language.isoen
dc.pagina.final3570
dc.pagina.inicio3557
dc.revistaMonthly notices of the royal astronomical society
dc.rightsacceso restringido
dc.subjectGalaxy: abundances
dc.subjectGalaxy: bulge
dc.subjectGalaxy: evolution
dc.subjectGalaxy: formation
dc.subjectGalaxy: stellar content
dc.subjectGalaxy: structure
dc.titleThe Milky Way's bulge star formation history as constrained from its bimodal chemical abundance distribution
dc.typeartículo
dc.volumen497
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files