The largest prime factor of n<SUP>2</SUP>+1and improvements on subexponential ABC
dc.contributor.author | Pasten, Hector | |
dc.date.accessioned | 2025-01-20T17:08:27Z | |
dc.date.available | 2025-01-20T17:08:27Z | |
dc.date.issued | 2024 | |
dc.description.abstract | We combine transcendental methods and the modular approaches to the ABC conjecture to show that the largest prime factor of n(2)+1isatleastofsize(log(2)n)(2)/log(3)nwhere log k is the k-th iterate of the logarithm. This gives a substantial improvement on the best available estimates, which are essentially of size log2ngoing back to work of Chowla in 1934. Using the same ideas, we also obtain significant progress on sub expoential bounds for the ABC conjecture, which in a case gives the first improvement on a result by Stewart and Yu dating back over two decades. Central toour approach is the connection between Shimura curves and the ABC conjecture developed by the author. | |
dc.description.funder | ANID Fondecyt Regular from Chile | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1007/s00222-024-01244-6 | |
dc.identifier.eissn | 1432-1297 | |
dc.identifier.issn | 0020-9910 | |
dc.identifier.uri | https://doi.org/10.1007/s00222-024-01244-6 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/90951 | |
dc.identifier.wosid | WOS:001174066400001 | |
dc.language.iso | en | |
dc.revista | Inventiones mathematicae | |
dc.rights | acceso restringido | |
dc.subject | 11J25 | |
dc.subject | 11J86 | |
dc.subject | 11G18 | |
dc.title | The largest prime factor of n<SUP>2</SUP>+1and improvements on subexponential ABC | |
dc.type | artículo | |
sipa.index | WOS | |
sipa.trazabilidad | WOS;2025-01-12 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- The largest prime factor of.pdf
- Size:
- 1.1 MB
- Format:
- Adobe Portable Document Format
- Description: