On a semilinear parabolic system of reaction-diffusion with absorption

dc.contributor.authorBidaut-Véron, MF
dc.contributor.authorGarcía-Huidobro, M
dc.contributor.authorYarur, C
dc.date.accessioned2025-01-21T01:08:40Z
dc.date.available2025-01-21T01:08:40Z
dc.date.issued2003
dc.description.abstractWe consider the semilinear parabolic system with absorption terms in a bounded domain Omega of R-N
dc.description.abstract(GRAPHICS)
dc.description.abstractwhere p, q>0 and k, lgreater than or equal to0, with Dirichlet or Neuman conditions on partial derivativeOmega x (0,infinity). We study the existence and uniqueness of the Cauchy problem when the initial data are L-1 functions or bounded measures. We find invariant regions when u(0), v(0) are nonnegative, and give sufficient conditions for positivity or extinction in finite time.
dc.fuente.origenWOS
dc.identifier.issn0921-7134
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/96497
dc.identifier.wosidWOS:000186449500003
dc.issue.numero3-4
dc.language.isoen
dc.pagina.final283
dc.pagina.inicio241
dc.revistaAsymptotic analysis
dc.rightsacceso restringido
dc.titleOn a semilinear parabolic system of reaction-diffusion with absorption
dc.typeartículo
dc.volumen36
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files