Ground states and free boundary value problems for the <i>n</i>-Laplacian in <i>n</i> dimensional space

dc.contributor.authorGarcía-Huidobro, M
dc.contributor.authorManásevich, R
dc.contributor.authorSerrin, J
dc.contributor.authorTang, MX
dc.contributor.authorYarur, CS
dc.date.accessioned2025-01-21T01:31:27Z
dc.date.available2025-01-21T01:31:27Z
dc.date.issued2000
dc.description.abstractUsing a new gradient estimate, we prove several theorems on the existence of radial ground states For the n-Laplace equation div(\del u\(n-2) del u) + f(u) = 0 in R-n,n > 1, and the existence of positive radial solutions for the associated Dirichlet-Neumann free boundary value problem in a ball. We treat exponentially subcritical. critical, and supercritical nonlinearities f(u), which also are allowed to have singularities at zero. Moreover, we show that the local behavior off at zero affects the existence in a crucial way: this allows us to prove the existence of ground states for a large class of functions f(ll) without imposing any restriction on their growth for large. (C) 2000 Academic Press.
dc.fuente.origenWOS
dc.identifier.issn0022-1236
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/97068
dc.identifier.wosidWOS:000086353900005
dc.issue.numero1
dc.language.isoen
dc.pagina.final201
dc.pagina.inicio177
dc.revistaJournal of functional analysis
dc.rightsacceso restringido
dc.titleGround states and free boundary value problems for the <i>n</i>-Laplacian in <i>n</i> dimensional space
dc.typeartículo
dc.volumen172
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files