A STATISTICAL APPROACH TO SIMULTANEOUS MAPPING AND LOCALIZATION FOR MOBILE ROBOTS
dc.contributor.author | Araneda, Anita | |
dc.contributor.author | Fienberg, Stephen E. | |
dc.contributor.author | Soto, Alvaro | |
dc.date.accessioned | 2024-01-10T13:11:18Z | |
dc.date.available | 2024-01-10T13:11:18Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Mobile robots require basic information to navigate through an environment: they need to know where they are (localization) and they need to know where they are going. For the latter, robots need a map of the environment. Using sensors of a variety of forms, robots gather information as they move through in environment in order to build a map. In this paper we present a novel sampling algorithm to solving the simultaneous mapping and localization (SLAM) problem in indoor environments. We approach the problem from a Bayesian statistics perspective. The data correspond to a set of range tinder and odometer measurements, obtained at discrete time instants. We focus on the estimation of the posterior distribution over the space of possible maps given the data. By exploiting different factorizations of this distribution, we derive three sampling algorithms based oil importance sampling. We illustrate the results of our approach by testing the algorithms with two real data sets obtained through robot navigation inside office buildings at Carnegie Mellon University and the Pontificia Universidad Catolica de Chile. | |
dc.description.funder | Fondecyt | |
dc.description.funder | NSF | |
dc.fechaingreso.objetodigital | 2024-05-15 | |
dc.format.extent | 19 páginas | |
dc.fuente.origen | WOS | |
dc.identifier.doi | 10.1214/07-AOAS115 | |
dc.identifier.issn | 1932-6157 | |
dc.identifier.uri | https://doi.org/10.1214/07-AOAS115 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/78029 | |
dc.identifier.wosid | WOS:000261050400004 | |
dc.information.autoruc | Matemática;Araneda A;S/I;87382 | |
dc.information.autoruc | Ingeniería;Soto A;S/I;73678 | |
dc.issue.numero | 1 | |
dc.language.iso | en | |
dc.nota.acceso | contenido completo | |
dc.pagina.final | 84 | |
dc.pagina.inicio | 66 | |
dc.publisher | INST MATHEMATICAL STATISTICS | |
dc.revista | ANNALS OF APPLIED STATISTICS | |
dc.rights | acceso abierto | |
dc.subject | Bayesian models | |
dc.subject | graphical models | |
dc.subject | Hidden Markov models | |
dc.subject | importance sampling | |
dc.subject | particle filtering | |
dc.subject | SLAM | |
dc.subject | MODELS | |
dc.subject | INFERENCE | |
dc.subject | INDOOR | |
dc.subject.ods | 11 Sustainable Cities and Communities | |
dc.subject.odspa | 11 Ciudades y comunidades sostenibles | |
dc.title | A STATISTICAL APPROACH TO SIMULTANEOUS MAPPING AND LOCALIZATION FOR MOBILE ROBOTS | |
dc.type | artículo | |
dc.volumen | 1 | |
sipa.codpersvinculados | 87382 | |
sipa.codpersvinculados | 73678 | |
sipa.index | WOS | |
sipa.index | Scopus | |
sipa.trazabilidad | Carga SIPA;09-01-2024 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- The Annals of Applied Statistics - 2007 - A statistical approach to simultaneous mapping and localization for mobile robots.pdf
- Size:
- 386.23 KB
- Format:
- Adobe Portable Document Format
- Description: