Side Groups Convert the α7 Nicotinic Receptor Agonist Ether Quinuclidine into a Type I Positive Allosteric Modulator
No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The quinuclidine scaffold has been extensively used forthe developmentof nicotinic acetylcholine receptor (nAChR) agonists, with hydrophobicsubstituents at position 3 of the quinuclidine framework providingselectivity for & alpha;7 nAChRs. In this study, six new ligands (4-9) containing a 3-(pyridin-3-yloxy)quinuclidinemoiety (ether quinuclidine) were synthesized to gain a better understandingof the structural-functional properties of ether quinuclidines.To evaluate the pharmacological activity of these ligands, two-electrodevoltage-clamp and single-channel recordings were performed. Only ligand 4 activated & alpha;7 nAChR. Ligands 5 and 7 had no effects on & alpha;7 nAChR, but ligands 6, 8, and 9 potentiated the currents evokedby ACh. Ligand 6 was the most potent and efficaciousof the potentiating ligands, with an estimated EC50 forpotentiation of 12.6 & PLUSMN; 3.32 & mu;M and a maximal potentiationof EC20 ACh responses of 850 & PLUSMN; 120%. Ligand 6 increased the maximal ACh responses without changing thekinetics of the current responses. At the single-channel level, thepotentiation exerted by ligand 6 was evidenced in thelow micromolar concentration range by the appearance of prolongedbursts of channel openings. Furthermore, computational studies revealedthe preference of ligand 6 for an intersubunit site inthe transmembrane domain and highlighted some putative key interactionsthat explain the different profiles of the synthesized ligands. Notably,Met276 in the 15 & PRIME; position of the transmembrane domain 2 almostabolished the effects of ligand 6 when mutated to Leu.We conclude that ligand 6 is a novel type I positiveallosteric modulator (PAM-I) of & alpha;7 nAChR.
Description
Keywords
Ether quinuclidines, chemical synthesis, positiveallosteric modulator, voltage-clamp, single-channelrecordings, molecular docking, molecular dynamics