Phase-Shifted Model Predictive Control to Achieve Power Balance of CHB Converters for Large-Scale Photovoltaic Integration
dc.contributor.author | Cuzmar Leiva, Rodrigo Hernán | |
dc.contributor.author | Pereda Torres, Javier Eduardo | |
dc.contributor.author | Aguilera, Ricardo P. | |
dc.date.accessioned | 2022-05-18T14:39:47Z | |
dc.date.available | 2022-05-18T14:39:47Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Cascaded H-Bridge (CHB) converters are attractive candidates for next generation photovoltaic (PV) inverters. CHB converters present a reduced voltage stress per power switch and a high modularity. Therefore, the plant can be divided in several PV strings that can be connected to each H-bridge cell. However, due to variability on solar irradiance conditions, each PV string may present different maximum available power levels, which difficult the overall converter operation. To address this issue, this paper presents a model predictive control (MPC) strategy, which works along with a phase-shifted PWM (PS-PWM) stage; hence its name phase-shifted MPC (PS-MPC). The novelty of this proposal is the way both inter-bridge and inter-phase power imbalance are directly considered into the optimal control problem by a suitable system reference design. Thus, the inter-phase imbalance power is tackled by enforcing the converter to operate with a proper zero-sequence voltage component. Then, by exploiting the PS-PWM working principle, PS-MPC is able to handle each H-bridge cell independently. This allows the predictive controller to also deal with an inter-bridge power imbalance using the same control structure. Experimental results on a 3 kW prototype are provided to verify the effectiveness of the proposed PS-MPC strategy. | |
dc.fuente.origen | IEEE | |
dc.identifier.doi | 10.1109/TIE.2020.3026299 | |
dc.identifier.issn | 1557-9948 | |
dc.identifier.uri | https://doi.org/10.1109/TIE.2020.3026299 | |
dc.identifier.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9209111 | |
dc.identifier.uri | https://repositorio.uc.cl/handle/11534/64157 | |
dc.information.autoruc | Escuela de ingeniería ; Cuzmar Leiva, Rodrigo Hernán ; S/I ; 223056 | |
dc.information.autoruc | Escuela de ingeniería ; Pereda Torres, Javier ; S/I ; 131481 | |
dc.issue.numero | 10 | |
dc.language.iso | en | |
dc.nota.acceso | Contenido parcial | |
dc.pagina.final | 9629 | |
dc.pagina.inicio | 9619 | |
dc.revista | IEEE Transactions on Industrial Electronics | |
dc.rights | acceso restringido | |
dc.subject | Voltage control | |
dc.subject | Pulse width modulation | |
dc.subject | DC-DC power converters | |
dc.subject | Photovoltaic systems | |
dc.subject | Switches | |
dc.title | Phase-Shifted Model Predictive Control to Achieve Power Balance of CHB Converters for Large-Scale Photovoltaic Integration | es_ES |
dc.type | artículo | |
dc.volumen | 68 | |
sipa.codpersvinculados | 223056 | |
sipa.codpersvinculados | 131481 |