Uniqueness of positive solutions of Δu+f(u)=0 in R<SUP>N</SUP>, N≥3

dc.contributor.authorCortazar, C
dc.contributor.authorElgueta, M
dc.contributor.authorFelmer, P
dc.date.accessioned2025-01-21T01:32:55Z
dc.date.available2025-01-21T01:32:55Z
dc.date.issued1998
dc.description.abstractWe study the uniqueness of radial ground states for the semilinear elliptic partial differential equation
dc.description.abstractDelta u + f(u) = 0 (*)
dc.description.abstractin R-N. We assume that the function f has two zeros, the origin and u(0) > 0. Above u(0) the function f is positive, is locally Lipschitz continuous and satisfies convexity and growth conditions of a superlinear nature. Below u(0), f is assumed to be nonpositive, non-identically zero and merely continuous.
dc.description.abstractOur results are obtained through a careful analysis of the solutions of an associated initial-value problem, and the use of a monotone separation theorem.
dc.description.abstractIt is known that, for a large class of functions f, the ground states of (*) are radially symmetric. In these cases our result implies that (*) possesses at most one ground state.
dc.fuente.origenWOS
dc.identifier.issn0003-9527
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/97341
dc.identifier.wosidWOS:000075668200002
dc.issue.numero2
dc.language.isoen
dc.pagina.final141
dc.pagina.inicio127
dc.revistaArchive for rational mechanics and analysis
dc.rightsacceso restringido
dc.titleUniqueness of positive solutions of Δu+f(u)=0 in R<SUP>N</SUP>, N≥3
dc.typeartículo
dc.volumen142
sipa.indexWOS
sipa.trazabilidadWOS;2025-01-12
Files