Unsupervised anomaly detection in large databases using Bayesian networks

dc.contributor.authorCansado, Antonio
dc.contributor.authorSoto, Alvaro
dc.date.accessioned2024-01-10T12:10:31Z
dc.date.available2024-01-10T12:10:31Z
dc.date.issued2008
dc.description.abstractToday, there has been a massive proliferation of huge databases storing valuable information. The opportunities of an effective use of these new data sources are enormous; however the huge size and dimensionality of current large databases calls for new ideas to scale up current statistical and computational approaches. This article presents an application Of artificial intelligence technology to the problem of automatic detection of candidate anomalous records in a large database. IMP build our approach with three main goats in mind: 1) an effective detection of the records that are potentially anomalous; 2) a suitable selection of the subset of attributes that. explains what makes a record anomalous; and. 3) an efficient implementation that allows us to scale the approach to large databases. Our algorithm called Boyesian network anomaly detector (BNAD), uses the joint probability density junction (pdf) provided by a Bayesian network (BN) to achieve these goals. By using appropriate data structures, advanced caching techniques, the flexibility of Gaussian mixture mod els, Find the efficiency of BNs to model joint pdfs, BNAD manages to efficiently learn a suitable BV from a large dataset. We test BNAD using synthetic and real databases, the latter from the fields of manufacturing and astronomy, obtaining encouraging results.
dc.fechaingreso.objetodigital2024-05-09
dc.format.extent22 páginas
dc.fuente.origenWOS
dc.identifier.doi10.1080/08839510801972801
dc.identifier.eissn1087-6545
dc.identifier.issn0883-9514
dc.identifier.urihttps://doi.org/10.1080/08839510801972801
dc.identifier.urihttps://repositorio.uc.cl/handle/11534/76583
dc.identifier.wosidWOS:000255470900002
dc.information.autorucIngeniería;Cansado A;S/I;19050
dc.information.autorucIngeniería;Soto A;S/I;73678
dc.issue.numero4
dc.language.isoen
dc.nota.accesocontenido parcial
dc.pagina.final330
dc.pagina.inicio309
dc.publisherTAYLOR & FRANCIS INC
dc.revistaAPPLIED ARTIFICIAL INTELLIGENCE
dc.rightsacceso restringido
dc.titleUnsupervised anomaly detection in large databases using Bayesian networks
dc.typeartículo
dc.volumen22
sipa.codpersvinculados19050
sipa.codpersvinculados73678
sipa.indexWOS
sipa.trazabilidadCarga SIPA;09-01-2024
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024-05-09. Unsupervised anomaly detection in large databases using Bayesian networks.pdf
Size:
2.81 KB
Format:
Adobe Portable Document Format
Description: